AI大模型
文章平均质量分 95
guslegend
后端的学习者,可以加我的微信guslegend_,进入我的后端交流群,我们大家一起共同进步!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
使用DeepSeek开发小红书文案助手
本文介绍了AIAgent的理论基础与开发实践。首先对比了LLM(擅长一次性文本生成)和Agent(具备自主规划、工具使用和环境反馈能力)的区别,阐述了Agent的自主性、感知能力、行动力和目标导向特性。文章重点讲解了Agent开发流程,包括目标定义、LLM选择、架构设计、工具集成、提示词工程和记忆机制等环节。随后详细演示了基于DeepSeek平台开发Agent的具体方法,包括工具调用和ReAct范式应用,并提供了一个完整的小红书文案智能助手实现案例。该案例展示了如何通过系统提示词设计、工具定义(搜索、查询、原创 2025-12-13 15:45:56 · 375 阅读 · 0 评论 -
使用DeepSeek开发第一个RAG
本文介绍了基于DeepSeek API和RAG技术构建智能问答机器人的完整流程。主要内容包括:1) DeepSeek API开发环境的搭建,包括Python虚拟环境配置和API调用方法;2) 向量数据库原理与Milvus实战,详细讲解RAG技术中向量数据库的核心作用;3) RAG技术全流程实现,从数据预处理、嵌入模型选择到检索策略和提示工程;4) 完整的代码示例,展示如何结合DeepSeek API与Milvus向量数据库构建问答系统。文章特别强调了RAG技术在减少大模型幻觉、使用最新知识等方面的优势,并提原创 2025-12-11 18:23:49 · 566 阅读 · 0 评论
分享