【目标检测二】 Faster R-CNN训练、测试自己的数据

有多个Tensorflow版本的faster r-cnn。本文用的版本如下:

https://github.com/endernewton/tf-faster-rcnn

不同版本实现代码上有小差异。

使用流程图如下。

说明

1.搭建环境:
Tensorflow-gpu==1.2.1
Cuda8.0
Cudnn5.1

2.在命令行输入以下

  ```

./data/scripts/fetch_faster_rcnn_models.sh 

NET=res101
  TRAIN_IMDB=voc_2007_trainval+voc_2012_trainval
  mkdir -p output/${NET}/${TRAIN_IMDB}
  cd output/${NET}/${TRAIN_IMDB}
  ln -s ../../../data/voc_2007_trainval+voc_2012_trainval ./default
  cd ../../..
  ```

这个脚本提供的路径好像下不了了。去readme里面找个路径。

 

3.制作数据,放到data里面

4.pascal_voc里面修改自己数据的类别

5./experiments/script/里面的训练脚本和测试脚本可以改迭代次数,学习率什么的。更多的参数,在config.py里面改。

6.测试的时候用的是demo.py。先修改以下类别再用。

关于demo.py批量测试,参考以下。

https://blog.csdn.net/gusui7202/article/details/83239142

https://blog.csdn.net/gusui7202/article/details/83240212

https://blog.csdn.net/gusui7202/article/details/83412943

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值