【目标检测】Fast R-CNN算法

在这里插入图片描述
论文翻译:
https://www.cnblogs.com/wj-1314/p/13359146.html

引言:

SPP-Net的性能已经得到很大的改善,但由于网络之间训练不统一,造成很大的麻烦,Fast R-CNN就是为了解决这样的问题。

1. Fast R-CNN

改进的地方:

提出一个RoI pooling(region of interest即候选区),然后整合整个模型,把CNN、SPP层、分类器、bbox回归几个模块一起训练。
在这里插入图片描述
步骤

  1. 特征提取:以整张图片为输入利用CNN(例如VGG)得到图片的特征层feature map;
  2. 候选区域:通过Selective Search等方法从原始图片提取区域候选框,并把这些候选框一一投影到最后的特征层;
  3. 区域归一化:针对特征层上的每个区域候选框进行RoI Pooling操作,得到固定大小的特征表示;
  4. 分类与回归:然后再通过两个全连接层,分别用softmax多分类做目标识别,用回归模型进行边框位置与大小微调。

Fast R-CNN比R-CNN的训练速度(大模型L)快8.8倍,测试时间快213倍,比SPP-net训练速度快2.6倍,测试速度快10倍左右。

1.1 RoI pooling
首先RoI pooling只是一个简单版本的SPP层,目的是为了减少计算时间并且得出固定长度的向量。
在这里插入图片描述
RoI池层使用最大池化将任何有效的RoI区域内的特征转换成具有H×W的固定空间范围的小feature map,其中H和W是超参数 它们独立于任何特定的RoI。

例如:
VGG16 的第一个 FC 层的输入是 7 x 7 x 512,其中 512 表示 feature map 的层数。在经过 pooling 操作后,其特征输出维度满足 H x W。

假设输出的结果与FC层要求大小不一致,对原本 max pooling 的单位网格进行调整,使得 pooling 的每个网格大小动态调整为 h/H,w/W, 最终得到的特征维度都是HxWxD。

它要求 Pooling 后的特征为 7 x 7 x512(即要求输入到 FC 层的特征维度是7 x 7),如果碰巧 ROI 区域只有 6 x 6 大小怎么办?每个网格的大小取 6/7=0.85 , 6/7=0.85,以长宽为例,

按照这样的间隔取网格:[0, 0.85, 1.7, 2.55, 3.4, 4.25, 5.1, 5.95],取整后,每个网格对应的起始坐标为:[0, 1, 2, 3, 4, 5, 6]

下面是一整套RoI pooling流程图:

  1. 首先经过卷积层得到的特征图:
    在这里插入图片描述
  2. 得到候选区:

在这里插入图片描述
因为每个候选区大小不固定,需要提取一个固定长度的特征向量:

这里是用4 x 4的RoI池层(相当于之前说的SPP层的一部分):
在这里插入图片描述

最后进行池化:
在这里插入图片描述
为什么要设计单个尺度呢?这要涉及到single scale与multi scale两者的优缺点

  • single scale,直接将image定为某种scale,直接输入网络来训练即可。(Fast R-CNN)
  • multi scale,也就是要生成一个金字塔,然后对于object,在金字塔上找到一个大小比较接近227x227的投影版本

后者比前者更加准确些,不过没有突出很多。但是第一种时间要省很多,所以实际采用的是第一个策略,因此Fast R-CNN要比SPP-Net快很多也是因为这里的原因。

1.2 End-to-End model ( 端对端模型 )

从输入端到输出端直接用一个神经网络相连,整体优化目标函数。

接着我们来看为什么后面的整个网络能进行统一训练?
特征提取CNN的训练和SVM分类器的训练在时间上是先后顺序,两者的训练方式独立,因此SVMs的训练Loss无法更新SPP层之前的卷积层参数,去掉了SVM分类这一过程,所有特征都存储在内存中,不占用硬盘空间,形成了End-to-End模型(生成Region proposal除外,end-to-end在Faster-RCNN中得以完善)

  • 使用了softmax分类
  • RoI pooling能进行反向传播,SPP层不适合(具体原因还不是很懂,待深究)

2. 多任务损失 Multi-task loss
两个loss,分别是:

  • 对于分类loss,是一个N+1维的softmax输出,其中的N是类别个数,1是背景,使用交叉熵损失。之所以要N+1类,是因为region proposal 会被标记为0,什么都没有,会什么类别都不是,因此最后一层神经元要 N+1 个。

  • 对于回归loss,是一个4xN维输出的regressor,也就是说对于每个类别都会训练一个单独的regressor,使用平均绝对误差(MAE)损失即L1损失。这里训练的就是边框对应的4个坐标,左上角一对坐标,右下角一对坐标。

3. R-CNN、SPPNet、Fast R-CNN效果对比

其中有一项指标为mAP,这是一个对算法评估准确率的指标,mAP衡量的是学出的模型在所有类别上的好坏。
在这里插入图片描述

4. Fast R-CNN总结

在这里插入图片描述
缺点:

  • 使用Selective Search提取Region Proposals,没有实现真正意义上的端对端,操作也十分耗时(Faster R-CNN会改善)

网友总结:
https://www.cnblogs.com/gujianhan/p/6035514.html

https://shartoo.github.io/2017/01/13/RCNN-series/

https://www.cnblogs.com/CZiFan/p/9903518.html

https://zhuanlan.zhihu.com/p/23203899

参考:
https://www.cnblogs.com/kongweisi/p/10900021.html

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器不学习我学习

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值