给定一个无序的整数数组,找到其中最长上升子序列的长度。
示例:输入: [10,9,2,5,3,7,101,18]
输出: 4
解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4。
说明:可能会有多种最长上升子序列的组合,你只需要输出对应的长度即可。
你算法的时间复杂度应该为 O(n2) 。
进阶: 你能将算法的时间复杂度降低到 O(n log n) 吗?来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-increasing-subsequence
方法1:动态规划求解
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if nums==[]: return 0
length=len(nums)
# 暂存子序列长度,1 个字符显然是长度为 1 的上升子序列
dp=[1 for _ in range(length)]
for i in range(length):
for j in range(0,i):
if nums[i]>nums[j]:
# 状态:dp[i] 表示以 nums[i] 结尾的「上升子序列」的长度
# 当nums[i]前面存在小于nums[i]的nums[j],
# 则暂存在dp[j]+1就是当前nums[i]的最长增长子序列的长度
dp[i]=max(dp[i],dp[j]+1)
return max(dp)
方法2:将方法1稍微改动一下,仍用dp来暂存子序列,但是用lis作为子序列长度的窗口,相当于不断的扩大这个窗口使得lis最后长度就是最长增长子序列长度
对原序列进行遍历,将每位元素二分插入 dp中
- 如果 dp 中元素都比num[i]小,将它插到最后
- 否则,用num[i]覆盖掉dp中比它大的元素中最小的那个
思想就是让 dp 中暂时存储比较小的元素。这样,dp中未必是真实的最长上升子序列,但长度lis是对的。
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
if nums==[]: return 0
length=len(nums)
# 暂存查找到的子序列
dp=[1 for _ in range(length)]
lis=0 # 增长子串的长度
for n in nums:
# 利用二分查找法来搜索子序列
left=0
right=lis
while left<right:
mid=(left+right)//2
if dp[mid]<n:
left=mid+1
else:
right=mid
if left == lis: lis+=1
dp[left]=n
return lis
方法三:利用Python实现对子序列的查找,
class Solution:
def lengthOfLIS(self, nums: List[int]) -> int:
import bisect
a = []
for i in nums:
pos = bisect.bisect_left(a,i)
if pos == len(a):
a.append(i)
else:
a[pos] = i
return len(a)