第十一届蓝桥杯既约分数 Java

本文介绍了一个计算1到2020之间既约分数数量的程序。通过使用欧几里得算法求最大公约数来判断两个数是否互质,进而确定分数是否为既约分数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
本题总分:5 分
【问题描述】
如果一个分数的分子和分母的最大公约数是 1,这个分数称为既约分数。
例如,3/4,5/2,1/8,7/1
都是既约分数。
请问,有多少个既约分数,分子和分母都是 1 到 2020 之间的整数(包括 1
和 2020)?
【答案提交】
这是一道结果填空题,你只需要算出结果后提交即可。本题的结果为一个整数,在提交答案时只填写这个整数,填写多余的内容将无法得分。

题目解析:
这题的最大难点就是求最大的公约数,如果会求最大公约数,这题就会迎刃而解。
而要判断最大公约数就要用到欧几里和《几何原本》的求解方法。
在这里插入图片描述
题目中说,最大公约数为1
则:

if(gcd(a,b)==1){  }

再在其中加入必要的条件就好了
题目链接:

public class 既约分数 {
    public static void main(String[] args) {
        int count=0;
        for (int i = 1; i <= 2020; i++) {
            for (int j = 1; j <=2020 ; j++) {
                if(gcd(i,j)==1) {
                    count++;
                }

            }
        }
        System.out.println(count);
    }
    public static int gcd(int a,int b){
        if(b==0){
            return a;
        }
        return gcd(b,a%b);
    }
}

题目答案:
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值