java.util.Stream
表示能应用在一组元素上一次执行的操作序列。Stream 操作分为中间操作或者最
终操作两种,最终操作返回一特定类型的计算结果,而中间操作返回Stream本身,这样你就可以将多
个操作依次串起来。Stream 的创建需要指定一个数据源,比如java.util.Collection
的子类,List
或者 Set, Map 不支持。Stream 的操作可以串行执行或者并行执行。
首先看看Stream是怎么用,首先创建实例代码的用到的数据List:
List<String> stringList= new ArrayList<>();
stringList.add("ddd2");
stringList.add("aaa2");
stringList.add("bbb1");
stringList.add("aaa1");
stringList.add("bbb3");
stringList.add("ccc");
stringList.add("bbb2");
stringList.add("ddd1");
Java 8扩展了集合类,可以通过 Collection.stream() 或者 Collection.parallelStream() 来创建一个
Stream。下面几节将详细解释常用的Stream操作:
Filter(过滤)
过滤通过一个predicate接口来过滤并只保留符合条件的元素,该操作属于中间操作,所以我们可以在
过滤后的结果来应用其他Stream操作(比如forEach)。forEach需要一个函数来对过滤后的元素依次
执行。forEach是一个最终操作,所以我们不能在forEach之后来执行其他Stream操作。
// 测试 Filter(过滤)
stringList
.stream()
.filter((s) -> s.startsWith("a"))
.forEach(System.out::println);//aaa2 aaa1
forEach 是为 Lambda 而设计的,保持了最紧凑的风格。而且 Lambda 表达式本身是可以重用的,非
常方便。
Sorted(排序)
排序是一个中间操作,返回的是排序好后的 Stream。如果你不指定一个自定义的 Comparator 则会
使用默认排序。
// 测试 Sort (排序)
stringList
.stream()
.sorted()
.filter((s) -> s.startsWith("a"))
.forEach(System.out::println);// aaa1 aaa2
需要注意的是,排序只创建了一个排列好后的Stream,而不会影响原有的数据源,排序之后原数据stringList是不会被修改的:
System.out.println(stringList);// ddd2, aaa2, bbb1, aaa1, bbb3, ccc, bbb2, ddd1
Map(映射)
中间操作 map 会将元素根据指定的 Function 接口来依次将元素转成另外的对象。
下面的示例展示了将字符串转换为大写字符串。你也可以通过map来讲对象转换成其他类型,map返回
的Stream类型是根据你map传递进去的函数的返回值决定的。
// 测试 Map 操作
stringList
.stream()
.map(String::toUpperCase)
.sorted((a, b) -> b.compareTo(a))
.forEach(System.out::println);
// "DDD2", "DDD1", "CCC", "BBB3", "BBB2", "AAA2", "AAA1"
Match(匹配)
Stream提供了多种匹配操作,允许检测指定的Predicate是否匹配整个Stream。所有的匹配操作都是 最终操作 ,并返回一个 boolean 类型的值。
// 只要有一个满足条件就返回true
boolean anyStartsWithA = stringList.stream().anyMatch((s) -> s.startsWith("a"));
System.out.println(anyStartsWithA); // true
// 集合中的元素全部满足条件则返回true
boolean allStartsWithA = stringList.stream().allMatch((s) -> s.startsWith("a"));
System.out.println(allStartsWithA); // false
// 集合中不包含有满足这个判断的元素或者流中元素为空的时候方法返回true
boolean noneStartsWithZ = stringList.stream().noneMatch((s) -> s.startsWith("z"));
System.out.println(noneStartsWithZ); // true
Count(计数)
计数是一个 最终操作,返回Stream中元素的个数,返回值类型是 long。
//测试 Count (计数)操作
long startsWithB = stringList.stream()
.filter((s) -> s.startsWith("b"))
.count();
System.out.println(startsWithB); // 3
Reduce(规约)
这是一个 最终操作 ,允许通过指定的函数来讲stream中的多个元素规约为一个元素,规约后的结果是通过Optional 接口表示的:
//测试 Reduce (规约)操作
Optional<String> reduced = stringList.stream().sorted()
.reduce((s1, s2) -> s1 + "#" + s2);
reduced.ifPresent(System.out::println);//aaa1#aaa2#bbb1#bbb2#bbb3#ccc#ddd1#ddd2
Parallel Streams(并行流)
前面提到过Stream有串行和并行两种,串行Stream上的操作是在一个线程中依次完成,而并行Stream
则是在多个线程上同时执行。
下面的例子展示了是如何通过并行Stream来提升性能:
首先我们创建一个没有重复元素的大表:
int max = 1000000;
List<String> values = new ArrayList<>(max);
for (int i = 0; i < max; i++) {
UUID uuid = UUID.randomUUID();
values.add(uuid.toString());
}
Parallel Sort(并行排序)
//并行排序
long t0 = System.nanoTime();
long count = values.parallelStream().sorted().count();
System.out.println(count);
long t1 = System.nanoTime();
long millis = TimeUnit.NANOSECONDS.toMillis(t1 - t0);
System.out.println(String.format("parallel sort took: %d ms", millis));
1000000
parallel sort took: 475 ms//串行排序所用的时间
上面两个代码几乎是一样的,但是并行版的快了 50% 左右,唯一需要做的改动就是将 stream()
改为
parallelStream()
。