最优化之共轭梯度法

共轭梯度法是利用目标函数的梯度逐步产生共轭方向并将其作为搜索方向的方法。

1. 共轭方向与共轭方向法

定义:设H是n*n方阵且对称正定

(1)若对n维非零向量p和q,有p^THq = 0,则称p和q是H-共轭的;

(2)若对n维非零向量组d1,...,dm,对任意的i != j,di与dj是H-共轭的,则称d1,...,dm是H-共轭方程组。


当H = I,p^Tq = 0,即p与q相互正交,可见共轭是正交的推广。


定理:设H是n*n方阵且对称正定。若n维非零向量组d1,...,dm是H-共轭方程组,则d1,...,dm也是线性无关方程组。</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值