共轭梯度法不需要预先给定
Q
共轭方向,而是随着迭代的进行不断产生
Q
共轭方向。在每次的迭代中,利用上一个搜索方向和目标函数在当前迭代点的梯度向量 之间的线性组合构造一个新的方向,使其与前边已经产生的搜索方向组成
Q
共轭方向。对于一个
n
维二次型函数,沿着
考虑二次型函数:
其中, Q=QT>0 。初始点 x(0) ,搜索方向采用最速下降法的方向,即函数 f 在
d(0)=−g(0)
产生下一个迭代点:
x(1)=x(0)+α0d(0)
其中,步长为:
α0=argminα≥0f(x(0)+α0d(0))=−g(0)Td(0)d(0)TQd(0)
再展开下一次迭代,搜索方向 d(0) 和 d(1) 应该是关于 Q 共轭的。推广开来,在 k+1 词迭代中:
d(k+1)=−g(k+1)+βkd(k),k=0,1,2…
按照如下方式选择 βk , 可以使得 d(k+1) 和 d(0),d(1),…,d(k) 组成 Q 共轭方向:
βk=g(k+1)TQd(k)d(k)TQd(k)
共轭梯度法的算法步骤可以归纳如下:
- 令 k=0 ,选择初始值: x(0)
- 计算 g(0)=∇f(x(0)) ,如果 g(0)=0 ,停止。否则: d(0)=−g(0) .
- 计算 αk=−g(k)Td(k)d(k)TQd(k)
- 计算 x(k+1)=x(k)+αkd(k)
- 计算 g(k+1)=∇f(x(k+1)) ,如果 g(k+1)=0 ,停止。
- 计算 βk=g(k+1)TQd(k)d(k)TQd(k)
- 计算 d(k+1)=−g(k+1)+βkd(k)
- 令 k=k+1 ,回到第 3 <script type="math/tex" id="MathJax-Element-10156">3</script>步。