最优化学习笔记(十四)——共轭梯度法

    共轭梯度法不需要预先给定 Q 共轭方向,而是随着迭代的进行不断产生 Q 共轭方向。在每次的迭代中,利用上一个搜索方向和目标函数在当前迭代点的梯度向量 之间的线性组合构造一个新的方向,使其与前边已经产生的搜索方向组成 Q 共轭方向。对于一个 n 维二次型函数,沿着 Q 共轭方向进行搜索,经过 n 次迭代,即可得到极小点。
    考虑二次型函数:

f(x)=12xTQxxTb,xRn

其中, Q=QT>0 。初始点 x(0) ,搜索方向采用最速下降法的方向,即函数 f x(0) 处梯度的负方向,即:

d(0)=g(0)

产生下一个迭代点:
x(1)=
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值