共轭梯度法不需要预先给定 Q 共轭方向,而是随着迭代的进行不断产生 Q 共轭方向。在每次的迭代中,利用上一个搜索方向和目标函数在当前迭代点的梯度向量 之间的线性组合构造一个新的方向,使其与前边已经产生的搜索方向组成 Q 共轭方向。对于一个 n 维二次型函数,沿着
考虑二次型函数:
其中, Q=QT>0 。初始点 x(0) ,搜索方向采用最速下降法的方向,即函数 f 在
d(0)=−g(0)
产生下一个迭代点:
x(1)=
共轭梯度法不需要预先给定 Q 共轭方向,而是随着迭代的进行不断产生 Q 共轭方向。在每次的迭代中,利用上一个搜索方向和目标函数在当前迭代点的梯度向量 之间的线性组合构造一个新的方向,使其与前边已经产生的搜索方向组成 Q 共轭方向。对于一个 n 维二次型函数,沿着
考虑二次型函数: