NOI 2006 - 神奇的口袋 Bag

题目描述:


输入:

 


输出:

 

 

(样例略)

 

今天有同学问到这道题,我记得很久以前做这道题时用很优美的方法证明了一下,但今天仔细一想,却又纠结了(当时可能是伪证)。然后,今天花了半个上午+一个下午+半个晚上在这道题上,最后发现是基本的概念理解问题……


对于第i次选择,若不存在xj =i,称其为自由选择(自由取球);否则称为定向选择(定向取球)。


先可以证明一个结论:在不考虑之后的定向取球的情况下,连续的自由选择对各球被选中的概率无影响(引理1)。证明如下:

    用随机变量x[i][j]表示第i次取球后,颜色为j的球的个数,N[i]表示第i次取球后球的总数,E[i][j]表示x[i][j]的数学期望。设第i次为自由选择,则

E[i][j]

= sum(k * p{x[i][j]=k}, k)

= sum(k * (p{x[i-1][j]=k}*(N[i-1]-k)/N[i-1] + p{x[i-1][j]=k-d}*(k-d)/N[i-1]), k)

= 1/N[i-1]*(sum(k*p{x[i-1][j]=k}*N[i-1]-k^2*p{x[i-1][j]=k},k)

   + sum((k+d)*p{x[i-1][j]=k}*k), k+d)

= 1/N[i-1]*(E[i-1][j]*N[i-1] - sum(k^2*p{x[i-1][j]=k}, k)

   + sum(k^2*p{x[i-1][j]=k}, k+d) + d*E[i-1][j])

= E[i-1][j]*(1+d/N[i-1])

= E[i-1][j]*N[i]/N[i-1]

所以,E[i][j]/N[i] = E[i-1][j]/N[i-1],即选中j色球的概率不变。

(注:sum(f(x),x)表示对所有整数x的f(x)值求和,P{E}表示事件E发生的概率)

    现在观察一个例子:

    假设最初有红、蓝两种球各一个(分别用r、b表示),d = 1,求在一、三、四次均取到红球的概率。采取两种方法:

  1. 用Ei表示第i次取到红球的事件,则
    P(E1E3E4)
      = P(E1) * P(E3 | E1) * P(E4 | E1E3)
      = 1/2  * 2/3 * (2/3 * 4/5 + 1/3 * 3/5)   // 最后一项为分E2是否发生讨论
      = 1/3 * 11/15
  2. 最终结果只能是rrrr或rbrr,分别计算概率在再求和,得答案为1/4

方法2一定是正确的,那么问题出在哪儿呢?用方法2结果可以解出P(E4 | E1E3 )=3/4。这是为什么呢??




我在这儿纠结了很久,最后终于明白了:

对于三个事件E,F,G,P(G| EF ) = P(G|E) 不一定成立!

其实这是很明显的,但今天与我讨论过的所有同学都忽略了这一点,因为人们总是直观地认为第三次取红球这一条件对第二次取球结果的概率没有影响。

 

 

 

现在解决原问题。设第i次为定向取球,要求颜色为j,并且第i-1次为自由取球,考虑将定向取球换到第i-1次。与引理1类似可证明,对于连续两次定向取球,之前连续的自由取球不影响其发生的概率。考虑所有j1,有:

E[i-1][j]/N[i-1] * E[i][j1]/N[i] =

E[i-2][j]/N[i-2] * E[i-1][j1]/N[i-1] =

E[i-2][j]/N[i-2] * E[i][j1]/N[i]

 

(此处E表示之前所有定向取球满足的情况下的期望)

因此可以把所有定向取球与其之前的自由取球交换,使得所有定向取球从第一次开始连续进行,问题就很简单了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值