描述 Description | |||
给定一个长度为N(0<n<=10000)的序列,保证每一个序列中的数字a[i]是小于maxlongint的非负整数 ,编程要求求出整个序列中第k大的数字减去第k小的数字的值m,并判断m是否为质数。(0<k<=n) | |||
输入格式 Input Format | |||
输入格式: 第一行为2个数n,k(含义如上题) 第二行为n个数,表示这个序列 | |||
输出格式 Output Format | |||
输出格式: 如果m为质数则 第一行为'YES'(没有引号) 第二行为这个数m 否则 第一行为'NO' 第二行为这个数m | |||
样例输入 Sample Input |
5 2
1 2 3 4 5
样例输出 Sample Output
YES
2
时间限制 Time Limitation | |||
各个测试点1s 数据范围 20%数据满足0<n<=10 50%数据满足0<n<=5000 100%数据满足0<n<=10000 a[i]<=maxlongint | |||
注释 Hint | |||
对于第K大的详细解释: 如果一个序列为1 2 2 2 2 3 第1大 为3 第2大 为2 第3大 为2 第4大 为2 第5大 为1 第K小与上例相反 另外需要注意的是 最小的质数是2,如果小于2的话,请直接输出NO |
纯水题,快排一次,然后直接查找判断。需要注意的是这句话----“如果小于2的话,请直接输出NO”。我开始就是在这个的判断上失误了。。
const
maxn=10000;
var
n,k,m:longint;
a:array[1..maxn] of longint;
procedure init;
var
i:longint;
begin
readln(n,k);
for i:=1 to n do
read(a[i]);
end;
procedure qsort(l,r:longint);
var
i,j,x,t:longint;
begin
i:=l;
j:=r;
x:=a[(i+j) div 2];
repeat
while a[i]<x do inc(i);
while a[j]>x do dec(j);
if i<=j then
begin
t:=a[i];
a[i]:=a[j];
a[j]:=t;
inc(i);
dec(j);
end;
until i>j;
if i<r then qsort(i,r);
if j>l then qsort(l,j);
end;
function check(x:longint):boolean;
var
i:longint;
begin
if x<2 then exit(false);
if x=0 then exit(false);
if x=1 then exit(false);
if x=2 then exit(true);
check:=true;
for i:=2 to trunc(sqrt(x)) do
if (x mod i) = 0 then exit(false);
end;
procedure main;
var
x,y:longint;
begin
qsort(1,n);
x:=a[k];
y:=a[n-k+1];
m:=y-x;
end;
procedure outit;
begin
if check(m) then
begin
writeln('YES');
writeln(m);
end else
begin
writeln('NO');
writeln(m);
end;
end;
begin
init;
main;
outit;
end.