poj 3261 Milk Patterns(后缀数组,二分)

和poj 1743 差不多
也是算法合集之《后缀数组——处理字符串的有力工具》里面的例题。
里面也有思路

#include <cstdio>
#include <cstring>

const int MAXN = 1000010;
int r[MAXN],K,N,sa[MAXN];
int wa[MAXN],wb[MAXN],wv[MAXN],ws[MAXN];

int cmp(int *r,int a,int b,int l)
{
    return r[a]==r[b]&&r[a+l]==r[b+l];
}
void da(int *r,int *sa,int n,int m)
{
    int i,j,p,*x=wa,*y=wb,*t;
    for(i=0; i<m; i++) ws[i]=0;
    for(i=0; i<n; i++) ws[x[i]=r[i]]++;
    for(i=1; i<m; i++) ws[i]+=ws[i-1];
    for(i=n-1; i>=0; i--) sa[--ws[x[i]]]=i;
    for(j=1,p=1; p<n; j*=2,m=p)
    {
        for(p=0,i=n-j; i<n; i++) y[p++]=i;
        for(i=0; i<n; i++) if(sa[i]>=j) y[p++]=sa[i]-j;
        for(i=0; i<n; i++) wv[i]=x[y[i]];
        for(i=0; i<m; i++) ws[i]=0;
        for(i=0; i<n; i++) ws[wv[i]]++;
        for(i=1; i<m; i++) ws[i]+=ws[i-1];
        for(i=n-1; i>=0; i--) sa[--ws[wv[i]]]=y[i];
        for(t=x,x=y,y=t,p=1,x[sa[0]]=0,i=1; i<n; i++)
            x[sa[i]]=cmp(y,sa[i-1],sa[i],j)?p-1:p++;
    }
    return;
}

int rank[MAXN],height[MAXN];
void calheight(int *r,int *sa,int n)
{
    int i,j,k=0;
    for(i=1; i<=n; i++) rank[sa[i]]=i;
    for(i=0; i<n; height[rank[i++]]=k)
        for(k?k--:0,j=sa[rank[i]-1]; r[i+k]==r[j+k]; k++);
    return;
}

bool C(int d)
{
    int cnt = 1;
    for(int i = 2; i <= N; ++i)
    {
        //height[i]是指后缀数组中相邻的两个后缀的最长公共前缀
        //i是指排序后的后缀中第i个后缀
        //如果height[i] < d 就要重新开始计数
        //因为height[i] < d之后如果还有>d的height[i](也就是后边还有height[i]>d)
        //这时的height[i]已经和之前统计过的height[i]不再有长度>=d的公共前缀了
        //所以要重新计数,也就是重新分组
        if(height[i] >= d)
            ++cnt;
        else
            cnt = 1;
        if(cnt >= K)
            return true;
    }
    return false;
}

void solve()
{
    int lb = 1;
    int ub = N;
    while(lb < ub)
    {
        int mid = (lb+ub)/2;
        if(C(mid)) lb = mid+1;
        else ub = mid;
    }
    printf("%d\n",lb-1);
}

int main()
{
    while(scanf("%d %d",&N,&K) != EOF)
    {
        for(int i = 0; i < N; ++i)
            scanf("%d",&r[i]);
        r[N] = 0;
        da(r,sa,N+1,1000005);
        calheight(r,sa,N);
        solve();
    }
    return 0;
}
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
1 目标检测的定义 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。 目标检测任务可分为两个关键的子任务,目标定位和目标分类。首先检测图像中目标的位置(目标定位),然后给出每个目标的具体类别(目标分类)。输出结果是一个边界框(称为Bounding-box,一般形式为(x1,y1,x2,y2),表示框的左上角坐标和右下角坐标),一个置信度分数(Confidence Score),表示边界框中是否包含检测对象的概率和各个类别的概率(首先得到类别概率,经过Softmax可得到类别标签)。 1.1 Two stage方法 目前主流的基于深度学习的目标检测算法主要分为两类:Two stage和One stage。Two stage方法将目标检测过程分为两个阶段。第一个阶段是 Region Proposal 生成阶段,主要用于生成潜在的目标候选框(Bounding-box proposals)。这个阶段通常使用卷积神经网络(CNN)从输入图像中提取特征,然后通过一些技巧(如选择性搜索)来生成候选框。第二个阶段是分类和位置精修阶段,将第一个阶段生成的候选框输入到另一个 CNN 中进行分类,并根据分类结果对候选框的位置进行微调。Two stage 方法的优点是准确度较高,缺点是速度相对较慢。 常见Tow stage目标检测算法有:R-CNN系列、SPPNet等。 1.2 One stage方法 One stage方法直接利用模型提取特征值,并利用这些特征值进行目标的分类和定位,不需要生成Region Proposal。这种方法的优点是速度快,因为省略了Region Proposal生成的过程。One stage方法的缺点是准确度相对较低,因为它没有对潜在的目标进行预先筛选。 常见的One stage目标检测算法有:YOLO系列、SSD系列和RetinaNet等。 2 常见名词解释 2.1 NMS(Non-Maximum Suppression) 目标检测模型一般会给出目标的多个预测边界框,对成百上千的预测边界框都进行调整肯定是不可行的,需要对这些结果先进行一个大体的挑选。NMS称为非极大值抑制,作用是从众多预测边界框中挑选出最具代表性的结果,这样可以加快算法效率,其主要流程如下: 设定一个置信度分数阈值,将置信度分数小于阈值的直接过滤掉 将剩下框的置信度分数从大到小排序,选中值最大的框 遍历其余的框,如果和当前框的重叠面积(IOU)大于设定的阈值(一般为0.7),就将框删除(超过设定阈值,认为两个框的里面的物体属于同一个类别) 从未处理的框中继续选一个置信度分数最大的,重复上述过程,直至所有框处理完毕 2.2 IoU(Intersection over Union) 定义了两个边界框的重叠度,当预测边界框和真实边界框差异很小时,或重叠度很大时,表示模型产生的预测边界框很准确。边界框A、B的IOU计算公式为: 2.3 mAP(mean Average Precision) mAP即均值平均精度,是评估目标检测模型效果的最重要指标,这个值介于0到1之间,且越大越好。mAP是AP(Average Precision)的平均值,那么首先需要了解AP的概念。想要了解AP的概念,还要首先了解目标检测中Precision和Recall的概念。 首先我们设置置信度阈值(Confidence Threshold)和IoU阈值(一般设置为0.5,也会衡量0.75以及0.9的mAP值): 当一个预测边界框被认为是True Positive(TP)时,需要同时满足下面三个条件: Confidence Score > Confidence Threshold 预测类别匹配真实值(Ground truth)的类别 预测边界框的IoU大于设定的IoU阈值 不满足条件2或条件3,则认为是False Positive(FP)。当对应同一个真值有多个预测结果时,只有最高置信度分数的预测结果被认为是True Positive,其余被认为是False Positive。 Precision和Recall的概念如下图所示: Precision表示TP与预测边界框数量的比值 Recall表示TP与真实边界框数量的比值 改变不同的置信度阈值,可以获得多组Precision和Recall,Recall放X轴,Precision放Y轴,可以画出一个Precision-Recall曲线,简称P-R
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值