后缀数组第一题。
这道题要的是 重复至少K次的 最长子串。
先把后缀数组中的height数组处理出来,这个套模板就可以了。
然后接下来二分答案ans,然后扫描height数组,看看有没有是否有k-1个height[i]>=ans
有的话就是可以,否则继续做。
关于模板有个要注意的地方:
(至少我手上的是这样),需要在待处理数组后面加一个比所有字符都小的数字/字符,这样是为了防止无法比较。例如 222和222222这种情况,加了之后不会RE。如果是2220和222220,那这样的话一定可以比较出来的。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int nMax = 1200001;
int num[nMax];
int arr[nMax+1];
int sa[nMax], rank[nMax], height[nMax];
int wa[nMax], wb[nMax], wv[nMax], wd[nMax];
int n,k;
int cmp(int *r, int a, int b, int l){
return r[a] == r[b] && r[a+l] == r[b+l];
}
void da(int *r, int n, int m){ // 倍增算法 r为待匹配数组 n为总长度 m为字符范围
int i, j, p, *x = wa, *y = wb, *t;
for(i = 0; i < m; i ++) wd[i] = 0;
for(i = 0; i < n; i ++) wd[x[i]=r[i]] ++;
for(i = 1; i < m; i ++) wd[i] += wd[i-1];
for(i = n-1; i >= 0; i --) sa[-- wd[x[i]]] = i;
for(j = 1, p = 1; p < n; j *= 2, m = p){
for(p = 0, i = n-j; i < n; i ++) y[p ++] = i;
for(i = 0; i < n; i ++) if(sa[i] >= j) y[p ++] = sa[i] - j;
for(i = 0; i < n; i ++) wv[i] = x[y[i]];
for(i = 0; i < m; i ++) wd[i] = 0;
for(i = 0; i < n; i ++) wd[wv[i]] ++;
for(i = 1; i < m; i ++) wd[i] += wd[i-1];
for(i = n-1; i >= 0; i --) sa[-- wd[wv[i]]] = y[i];
for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i ++){
x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p - 1: p ++;
}
}
}
void calHeight(int *r, int n){ // 求height数组。
int i, j, k = 0;
for(i = 1; i <= n; i ++)
{
rank[sa[i]] = i;
//cout<<sa[i]<<endl;
}
for(i = 0; i < n; height[rank[i ++]] = k){
for(k ? k -- : 0, j = sa[rank[i]-1]; r[i+k] == r[j+k]; k ++);
}
}
bool test(int len,int n)
{
for(int i=n;;)
{
int tt=0;
int j=i;
if(i<=0) break;
while(j>=1)
{
if(height[j]>=len)
{
if(tt==0) tt+=2;
else tt++;
if(tt>=k) return true;
j--;
}
else
{
i=j-1;
break;
}
}
}
return false;
}
int main()
{
while(cin>>n>>k)
{
for(int i=0;i<n;i++) scanf("%d",&num[i]);
for(int i=0;i<n;i++) num[i]++;
num[n]=0;
da(num,n+1,1000002);
calHeight(num,n);
if(k>n)
{
cout<<0<<endl;
continue;
}
int l=0;
int r=n;
int ans=0;
while(l<=r)
{
int mid=(l+r)/2;
if(test(mid,n)==true)
{
ans=max(ans,mid);
l=mid+1;
}
else r=mid-1;
}
cout<<ans<<endl;
}
return 0;
}