51nod 1228 序列求和

通过伯努利数求自然数幂和。第一次接触伯努利数,打表套模板。。
参考:http://blog.csdn.net/acdreamers/article/details/38929067

#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const LL MOD = 1000000007;
const int MAXN = 2010;
LL Inv[MAXN];
LL C[MAXN][MAXN];
LL B[MAXN];
LL Fac[MAXN];
void init()
{
    Inv[1] = 1;
    for(int i = 2; i < MAXN; ++i)
        Inv[i] = (MOD - MOD/i)*Inv[MOD%i]%MOD;
    C[0][0] = 1;
    for(int i = 1; i < MAXN; ++i)
    {
        C[i][0] = C[i][i] = 1;
        for(int j = 1; j < i; ++j)
            C[i][j] = (C[i-1][j]%MOD + C[i-1][j-1]%MOD)%MOD;
    }
    B[0] = 1;
    for(int i = 1; i < MAXN; ++i)
    {
        LL ans = 0;
        for(int j = 0; j < i; ++j)
            ans = (ans%MOD + C[i+1][j]*B[j]%MOD)%MOD;
        B[i] = ((-1*ans*Inv[i+1])%MOD + MOD)%MOD;
    }
}

LL solve(LL k)
{
    LL ans = Inv[k+1];
    LL sum = 0;
    for(int i = 1; i <= k+1; ++i)
    {
        sum += C[k+1][i]*Fac[i]%MOD * B[k+1-i]%MOD;
        sum %= MOD;
    }
    ans *= sum;
    ans %= MOD;
    return ans;
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    int T;
    init();
    cin >> T;
    LL N,K;
    while(T--)
    {
        LL res = 0;
        cin >> N >> K;
        N %= MOD;
        Fac[0] = 1;
        for(int i = 1; i < MAXN; ++i)
            Fac[i] = Fac[i-1]*(N+1)%MOD;
        cout << solve(K) << endl;
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值