[51nod1228]序列求和

题目大意

设T(n) = n^k,S(n) = ni=1T(i) 。给出n和k,求S(n)。
例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55。
由于结果很大,输出S(n) Mod 1000000007的结果即可。

数据范围

T≤5000
k≤2000
N≤ 1018

分析

n很大,所以复杂度不应该带n

关于求自然数幂和,这里用到了伯努利数。
设伯努利数第i项为B[i],那么

i=1nik=1k+1i=1k+1Cik+1B[k+1i](n+1)i

时间复杂度 O(Tk)

伯努利数

伯努利数是18世纪瑞士数学家雅各布·伯努利引入的一个数。
——百度百科

设伯努利数第n项为B[n]。

B[n]=11n+1n1k=0Ckn+1B[k]n=0n≥1

伯努利数的性质:
当n≥1时, nk=0Ckn+1B[k]=0

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int maxn=2005,mo=1e9+7;

typedef long long LL;

int T,k,b[maxn],c[maxn][maxn],Inv[maxn],ans,tmp;

LL n;

int main()
{
    c[0][0]=1;
    for (int i=1;i<maxn;i++)
    {
        for (int j=1;j<=i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j]) % mo;
        c[i][0]=1;
    }
    Inv[1]=1;
    for (int i=2;i<maxn;i++) Inv[i]=(LL)Inv[mo % i] * (mo-mo/i) % mo;
    b[0]=1;
    for (int i=1;i<maxn;i++)
    {
        b[i]=0;
        for (int k=0;k<i;k++) b[i]=(b[i]+(LL)c[i+1][k]*b[k] % mo) % mo;
        b[i]=((LL)b[i]*(-Inv[i+1]) % mo+mo)%mo;
    }
    scanf("%d",&T);
    while (T--)
    {
        scanf("%lld %d",&n,&k);
        n++; n%=mo; tmp=n;
        ans=0;
        for (int i=1;i<=k+1;i++)
        {
            ans=(ans+(LL)c[k+1][i]*b[k+1-i]%mo*n%mo) % mo;
            n=(LL)n*tmp % mo;
        }
        ans=(LL)ans*Inv[k+1] % mo;
        printf("%d\n",ans);
    }
    return 0;
}
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值