poj 1681 Painter's Problem(高斯消元)

思路同poj 1222 EXTENDED LIGHTS OUT一样,只是多了个判断解的情况。
http://blog.csdn.net/shiren_Bod/article/details/5766907 这是poj 1222 的讲解,思路都是一样的。代码是kuangbin的模板。。

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;

const int MAXN = 300;
int g[MAXN][MAXN];
int equ,var;
int res[MAXN],freeX[MAXN];
int fnum,n;

void init()
{
    memset(g,0,sizeof(g));
    memset(res,0,sizeof(res));
    fnum = 0;
    equ = n*n;
    var = n*n;
    for(int i = 0; i < n; ++i)
    {
        for(int j = 0; j < n; ++j)
        {
            int t = i*n+j;
            g[t][t] = 1;
            if(i > 0) g[(i-1)*n+j][t] = 1;
            if(i < n-1) g[(i+1)*n+j][t] = 1;
            if(j > 0) g[i*n+j-1][t] = 1;
            if(j < n-1) g[i*n+j+1][t] = 1;
        }
    }
}

int Gauss()
{
    int maxR,col,k;
    fnum = 0;
    for(k = 0, col = 0; k < equ && col < var; ++k, ++col)
    {
        maxR = k;
        for(int i = k+1; i < equ; ++i)
            if(abs(g[i][col]) > g[maxR][col])
                maxR = i;
        //记录自由变量
        if(g[maxR][col] == 0)
        {
            k--;
            freeX[fnum++] = col;
            continue;
        }
        if(maxR != k)
        {
            for(int j = col; j < var+1; ++j)
                swap(g[k][j],g[maxR][j]);
        }
        for(int i = k+1; i < equ; ++i)
        {
            if(g[i][col] != 0)
                for(int j = col; j < var+1; ++j)
                    g[i][j] ^= g[k][j];
        }
    }
    //方程无解
    for(int i = k; i < equ; ++i)
        if(g[i][col] != 0)
            return -1;
    if(k < var) return var-k;//解不唯一
    //唯一解
    for(int i = var-1; i >= 0; --i)
    {
        res[i] = g[i][var];
        for(int j = i+1; j < var; ++j)
            res[i] ^= (g[i][j]&&res[j]);
    }
    return 0;
}

void solve()
{
    int t = Gauss();
    if(t == -1)
    {
        puts("inf");
        return;
    }
    else if(t == 0)
    {
        int ret = 0;
        for(int i = 0; i < n*n; ++i)
            ret += res[i];
        printf("%d\n",ret);
    }
    else
    {
        //枚举自由变量
        int ret = 0x3fffffff;
        int tot = (1<<t);
        //共t个自由变量,共tot种组合
        for(int i = 0; i < tot; ++i)
        {
            int cnt = 0;
            //枚举每种组合,包含的变元为1,不包含的就是0了
            for(int j = 0; j < t; ++j)
            {
                if(i&(1<<j))
                {
                    res[freeX[j]] = 1;
                    cnt++;
                }
                else
                    res[freeX[j]] = 0;
            }
            for(int j = var-t-1; j >= 0; --j)
            {
                int idx;
                for(idx = j; idx < var; ++idx)
                    if(g[j][idx])
                        break;
                res[idx] = g[j][var];
                for(int l = idx+1; l < var; ++l)
                    if(g[j][l])
                        res[idx] ^= res[l];
                cnt += res[idx];
            }
            ret = min(ret,cnt);
        }
        printf("%d\n",ret);
    }
}

int main()
{
    char op;
    int t;
    scanf("%d",&t);
    while(t--)
    {
        scanf("%d",&n);
        init();
        for(int i = 0; i < n; ++i)
        {
            for(int j = 0; j < n; ++j)
            {
                scanf(" %c",&op);
                //黄色为0,白色为1
                if(op == 'y') g[i*n+j][n*n] = 0;
                else g[i*n+j][n*n] = 1;
            }
        }
        solve();
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值