DP(3):可行性(存在)型

本文详细解析了青蛙跳石头问题的动态规划解决方案,通过定义状态、转移方程、初始条件和计算顺序,清晰地展示了如何判断青蛙能否从第一块石头跳到最后的石头。

题目:

有n块石头分别在x轴的0,1,2…n-1位置.一只青蛙在石头0,想跳到石头n-1,如果青蛙在第i块石头上它最多可以向右跳距离ai,问青蛙是否能调到石头n-1上.
eg:
输入:a=[2,3,1,1,4]
输出:true

解析:

一.确定状态

①最后一步

  • 如果青蛙能跳到最后一块石头n-1,我们考虑它跳的最后一步
  • 这一步是从石头i跳过来的i<n-1
  • 需要满足两个条件:①青蛙可以调到石头i②最后一步不超过跳跃的最大距离

②子问题

  • 我们需要知道青蛙能不能跳到石头i(i<n-1)
  • 而我们原来要求的是青蛙能不能跳到石头n-1
  • 子问题.
  • 状态是:设f[j]表示青蛙能不能跳到石头j

二.转移方程

设f[j]表示青蛙能不能跳到石头j

f[j] = OR(f[i] AND i+a[i] >=j)

青蛙能不能跳到石头j =
枚举上一个跳到的石头i (青蛙能不能跳到石头i && i向右的最大距离大于等于i和石头j之间的距离)
只要有一个i满足即为true,否则为false.

三.初始条件和边界情况

①初始条件: f[0] = true
②边界条件:

四.计算顺序

从小到大

solution:

#include <iostream>
#include <vector>
using namespace std;
int main()
{
   int n,k;//n块石头
   cin>>n;
   vector<int> vec(n);
   vector<bool> f(n);//是否可以跳到石头上
   
   for(int i=0;i<n;i++)
    {
           cin>>k;
           vec[i] = k;//每一块石头向右跳的最大值
    }
    f[0] = true;
    for(int j =1;j<n;j++)
    {
        for(int i=0;i<j;i++)//从前面的石头开始遍历
        {
            if(f[i] && i+vec[i]>=j)//能跳到第i块石头上并且当前位置加上第i块石头上能跳的最大距离>=目标石头的位置
            {
                f[j]=true;
                break;
            }
        }
    }
    cout<<f[n-1]<<endl;
    return 0;
}
<think>我们被要求判断给定的代码是否为动态规划算法,并写出该算法的解题思路,包括算法策略、约束条件、限界条件等。 给定的代码: ```cpp #include <iostream> #include <vector> #include <algorithm> #include <numeric> using namespace std; int dpMethod(vector<int>& t) { int total = accumulate(t.begin(), t.end(), 0); int n = t.size(); int half = total / 2; vector<vector<bool>> dp(n + 1, vector<bool>(half + 1, false)); // 初始化 dp[0][0] = true; // DP填表 for (int i = 1; i <= n; i++) { for (int j = 0; j <= half; j++) { dp[i][j] = dp[i-1][j]; // 不选当前零件 if (j >= t[i-1] && dp[i-1][j - t[i-1]]) { dp[i][j] = true; // 选当前零件 } } } // 寻找最大可行j int max_sum = 0; for (int j = half; j >= 0; j--) { if (dp[n][j]) { max_sum = j; break; } } return max(max_sum, total - max_sum); } int main() { cout << "算法名称:动态规划法 姓名: 程惠,学号2520636302" << endl << endl; vector<vector<int>> datasets = { {6,4,3,9}, {4,4,6,4,2}, {6,4,8,4,3,9} }; for (auto& t : datasets) { int res = dpMethod(t); cout << "最小总时间: " << res << endl; } return 0; } ``` ### 1. 判断是否为动态规划算法 这段代码是动态规划算法。原因如下: - 它使用了一个二维DP表`dp[i][j]`,其中`i`表示前`i`个零件,`j`表示机器1(或集合1)的时间总和。 - 状态转移:对于每个零件,有两种选择(选或不选),并更新状态。 - 填表过程:从底向上(从小到大)填充DP表。 ### 2. 解题思路 #### 问题描述 有$n$个零件,每个零件有一个加工时间$t_i$。现在需要将这些零件分配到两台机器上,使得两台机器的加工时间尽可能接近,从而最小化两台机器完成时间的最大值(即最小总时间)。 #### 算法策略 这是一个**子集和问题**(Subset Sum)的变种,目的是将零件分成两组,使得两组的总和尽可能接近。最小化最大完成时间等价于使两组和的最大值最小。动态规划方法如下: - **状态定义**:$dp[i][j]$表示考虑前$i$个零件,能否使机器1的加工时间恰好为$j$。 - **初始化**:$dp[0][0] = \text{true}$(前0个零件,机器1加工时间为0是可行的)。 - **状态转移**: - 不选第$i$个零件:$dp[i][j] = dp[i-1][j]$ - 选第$i$个零件:如果$j \geq t_{i-1}$且$dp[i-1][j-t_{i-1}]$为真,则$dp[i][j]$为真。 - **求解**:在考虑所有$n$个零件后,从$j=\text{half}$(即总时间的一半)向下寻找最大的$j$使得$dp[n][j]$为真(即机器1的加工时间不超过一半的最大值)。那么机器2的加工时间为$\text{total}-j$,最小总时间为$\max(j, \text{total}-j)$。 #### 约束条件 - **问题约束**:每个零件必须分配给其中一台机器且仅能分配一次。 - **算法约束**:由于状态表的大小为$(n+1) \times (\text{half}+1)$,要求总时间不能太大(即伪多项式时间)。 #### 限界条件 - **空间限界**:$j$的范围为$0$到$\lfloor \text{total}/2 \rfloor$,因为超过一半的值不会使得最大值更小(当一组超过一半时,最大值就是该组,而我们要找的是不超过一半的最大值,这样最大值就会尽可能接近一半)。 - **时间限界**:外层循环$n$次,内层循环$\text{half}+1$次,因此时间复杂度为$O(n \times \text{total})$(伪多项式时间)。 #### 算法输出 返回$\max(\text{max\_sum}, \text{total}-\text{max\_sum})$,即两台机器中完成时间的最大值,这个值就是最小化后的最大完成时间。 ### 3. 动态规划方法的正确性 该动态规划方法基于0-1背包问题的思想,将问题转化为:从零件中选出一些,使得它们的和不超过总时间的一半且尽可能大。由于两组和分别为$S_1$和$S_2$($S_1+S_2=\text{total}$),则最大完成时间为$\max(S_1, S_2)$。而$\max(S_1, S_2) \geq \lceil \text{total}/2 \rceil$,且当$S_1$和$S_2$尽可能接近时取到最小值。因此,找到一个不超过一半的最大子集和$S_1$,则$\max(S_1, \text{total}-S_1)$即为答案。 ### 4. 算法优化 - **空间优化**:可以将二维DP数组优化为一维数组(滚动数组),因为当前状态只依赖于上一行。这样可以节省空间,从$O(n \times \text{total})$优化到$O(\text{total})$。 - **剪枝**:在填表时,内层循环可以只遍历到当前可以达到的最大和(而不是固定到一半),但最坏情况不变。 ### 5. 测试数据集分析 代码中测试了三组数据: 1. `{6,4,3,9}`:总时间为22,一半为11。最大不超过11的子集和是多少?可能的子集:6+4=10,6+3=9,4+3+?都不超过11。最大为10?但实际我们找的是不超过11的最大值,而9+3=12>11(不可选),所以最大为10?但注意,我们有一个9,但是9>11?不对,9<11,那么能否同时选6和9?6+9=15>11(不行)。所以最大是10(6+4)?但动态规划表会计算所有可能。实际运行结果是12?因为最后返回的是max(10,12)=12?不对,因为总时间22,一半11,最大可能子集和不超过11,程序从11往下找,11是否存在?我们看:6+4+?=11?没有,6+3+?=11?不行。4+3+?=11?不行。所以最大是9(例如9)或10(6+4)。那么答案是max(10,12)=12?但实际最优应该是12(一组6+3+9=18?不对,这样另一组4,最大值18,但明显可以6+9=15,4+3=7,最大15;或者6+4+3=13,9=9,最大13;或者6+4=103+9=12,最大12。所以12是最优。程序返回12(因为最大子集和是10,则另一组12,所以返回12)。所以正确。 2. `{4,4,6,4,2}`:总时间为20,一半10。最大不超过10的子集和:4+4+2=10,则另一组6+4=10,所以返回103. `{6,4,8,4,3,9}`:总时间为34,一半17。最大不超过17的子集和:例如6+8+3=17,则另一组4+4+9=17,所以返回17。 ### 6. 总结 该代码使用了动态规划解决了两台机器任务调度问题,属于子集和问题的应用。通过构造一个布尔DP表,记录前$i$个零件能否凑出时间$j$,最后寻找不超过总时间一半的最大$j$,从而得到最小化最大完成时间为$\max(j, \text{total}-j)$。 --- §§相关问题§§ 1. 如何优化该动态规划算法的空间复杂度? 2. 如果零件数量很大但加工时间值较小,如何改进算法? 3. 分支限界法如何解决该问题?动态规划法相比有何优缺点? 4. 该问题是否可以用贪心算法求解?贪心策略是什么? </think>### 动态规划算法判断解析 #### 1. 算法判断 **是动态规划算法**,基于以下特征: - 使用二维状态表 `dp[i][j]` 存储子问题解 - 采用自底向上的填表策略(迭代计算) - 存在明确的状态转移方程 - 具有最优子结构特性 #### 2. 解题思路 **问题本质**:将零件集划分为两个子集,最小化子集和的最大值(最小化最大机器负载) **算法策略**: 1. **状态定义** $dp[i][j]$ = 布尔值,表示前$i$个零件能否使机器1耗时恰好为$j$ - $i$:考虑前$i$个零件($0 \leq i \leq n$) - $j$:机器1的耗时($0 \leq j \leq \lfloor \frac{\text{total}}{2} \rfloor$) 2. **状态初始化** $$dp[0][0] = \text{true} \quad (\text{零零件零耗时可行})$$ $$dp[0][j] = \text{false} \quad (j > 0)$$ 3. **状态转移方程** $$dp[i][j] = \begin{cases} dp[i-1][j] & \text{不选第i个零件} \\ dp[i-1][j - t_{i-1}] & \text{选第i个零件且 } j \geq t_{i-1} \end{cases}$$ 实际代码实现为逻辑或操作: ```cpp dp[i][j] = dp[i-1][j] || (j>=t[i-1] && dp[i-1][j-t[i-1]]) ``` 4. **约束条件** - 零件分配约束:每个零件必须分配给一台机器 - 状态范围约束:$j \leq \lfloor \frac{\text{total}}{2} \rfloor$(由对称性优化) - 非负约束:$t_i > 0$ 5. **限界条件** - 空间限界:仅计算$j \leq \frac{\text{total}}{2}$的状态 - 时间限界:内层循环从$j=\text{half}$向$0$搜索,找到可行解即终止 6. **最优解提取** $$\text{result} = \max\left( \max_{j} \{ j \mid dp[n][j]=\text{true} \}, \ \text{total} - \max_{j} \{ j \mid dp[n][j]=\text{true} \} \right)$$ #### 3. 算法特性 | 特性 | 说明 | |--------------|-------------------------------| | **时间复杂度** | $O(n \times \text{total})$(伪多项式) | | **空间复杂度** | $O(n \times \text{total})$ | | **最优性** | 保证全局最优解 | | **适用场景** | 总耗时较小(total ≤ 10⁵) | #### 4. 算法优化方向 1. **空间优化**:改用滚动数组(一维DP) ```cpp vector<bool> dp(half+1, false); dp[0] = true; for(int i=0; i<n; i++) for(int j=half; j>=t[i]; j--) dp[j] = dp[j] || dp[j-t[i]]; ``` 2. **剪枝优化**:记录当前最大可行和,提前终止内层循环 该算法通过将问题转化为**子集和问题**,利用动态规划的特性高效求解了两台机器的负载平衡问题。其核心在于将原问题分解为更小的子问题,并利用表格存储中间结果避免重复计算[^1]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值