DP(4):最长序列型

题目:

求一个序列中乘积最大的连续子序列的值.

解析:

①状态:
f[i]=最后一个元素为a[i]的连续子序列的最大值.
因为在乘积中一个负数乘以负数为大的正数,所以连续子序列的最小值也是当前状态
g[i]=最后一个元素为a[i]的连续子序列的最小值.
②初始条件:
f[0]=a[0]
g[0]=a[0]
③转移方程:

f[i] = max(max(f[i-1]*a[i],g[i-1]*a[i]),a[i])
g[i] = min(min(f[i-1]*a[i],g[i-1]*a[i]),a[i])

solution:

#include <iostream>
#include <vector>
using namespace std;
int main()
{
   vector<int> vec;//给定的序列
   int k;
   while(cin>>k)
   {
       vec.push_back(k);
       if(cin.get()=='\n')
           break;
   }
   int n = vec.size();
   vector<int> f(n);//以vec[i]结尾的连续子序列的最大值
   vector<int> g(n);//以vec[i]结尾的连续子序列的最小值
   f[0] = vec[0];
   g[0] = vec[0];
   int res;
   for(int i=1;i<n;i++)
   {
       f[i] = max(max(f[i-1]*vec[i],g[i-1]*vec[i]),vec[i]);
       g[i] = min(min(f[i-1]*vec[i],g[i-1]*vec[i]),vec[i]);
       res = max(res,f[i]);//因为连续子序列不一定包含当前值,所以不断更新res
   }
   cout<<res<<endl;
   return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值