题目:
求一个序列中乘积最大的连续子序列的值.
解析:
①状态:
f[i]=最后一个元素为a[i]的连续子序列的最大值.
因为在乘积中一个负数乘以负数为大的正数,所以连续子序列的最小值也是当前状态
g[i]=最后一个元素为a[i]的连续子序列的最小值.
②初始条件:
f[0]=a[0]
g[0]=a[0]
③转移方程:
f[i] = max(max(f[i-1]*a[i],g[i-1]*a[i]),a[i])
g[i] = min(min(f[i-1]*a[i],g[i-1]*a[i]),a[i])
solution:
#include <iostream>
#include <vector>
using namespace std;
int main()
{
vector<int> vec;//给定的序列
int k;
while(cin>>k)
{
vec.push_back(k);
if(cin.get()=='\n')
break;
}
int n = vec.size();
vector<int> f(n);//以vec[i]结尾的连续子序列的最大值
vector<int> g(n);//以vec[i]结尾的连续子序列的最小值
f[0] = vec[0];
g[0] = vec[0];
int res;
for(int i=1;i<n;i++)
{
f[i] = max(max(f[i-1]*vec[i],g[i-1]*vec[i]),vec[i]);
g[i] = min(min(f[i-1]*vec[i],g[i-1]*vec[i]),vec[i]);
res = max(res,f[i]);//因为连续子序列不一定包含当前值,所以不断更新res
}
cout<<res<<endl;
return 0;
}