蓝桥杯试题 算法训练 拿金币

本文介绍了一个经典的动态规划(DP)问题,即如何在 NxN 的方格中,从左上角走到右下角,获取最多的金币。通过建立辅助矩阵,更新每个格子的最大值,最终得到最优路径的金币总数。代码示例展示了具体的实现过程,并邀请读者深入理解DP算法。
摘要由CSDN通过智能技术生成

试题 算法训练 拿金币

资源限制

时间限制:1.0s 内存限制:256.0MB

问题描述

有一个N x N的方格,每一个格子都有一些金币,只要站在格子里就能拿到里面的金币。你站在最左上角的格子里,每次可以从一个格子走到它右边或下边的格子里。请问如何走才能拿到最多的金币。

输入格式

第一行输入一个正整数n。以下n行描述该方格。金币数保证是不超过1000的正整数。

输出格式

最多能拿金币数量。

样例输入

3
1 3 3
2 2 2
3 1 2

样例输出

11
  • 数据规模和约定
    n<=1000

解题思路

  • 可以看出这是一道经典的DP问题
  • 我们可以另取一个矩阵用来存储每次移动的最大值(即判断带计算值的上面和左面的最大值)
  • 这样每个格子的值都是从开始走到该格子的最大值,最后直接输出最后一个元素的值即可
    tips:具体的DP算法读者可以自行上网上查找。
#include<iostream>
using namespace std;
int n;
int a[1010][1010];
int b[1010][1010];
int main(){
	cin>>n;
	for(int i=1;i<=n;i++)
		for(int j=1;j<=n;j++)
			cin>>a[i][j];
	for(int i=1;i<=n;i++){
		for(int j=1;j<=n;j++){
			//计算统计矩阵b每个元素的值
			//前面括号内就是每次计算时取得临近的最大值 
			b[i][j]=(b[i-1][j]>b[i][j-1]?b[i-1][j]:b[i][j-1])+a[i][j];
		}
	}
	cout<<b[n][n];
	return 0;
} 

最后,本人也是初学更高层次的算法,有不对的地方欢迎大家指正。待以后有时间和能力也希望单独做一个算法的个人见解OvO。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值