秩 (线性代数)

 

from http://zh.wikipedia.org/wiki/%E7%9F%A9%E9%98%B5%E7%9A%84%E7%A7%A9

 

线性代数中,一个矩阵A列秩A线性无关纵列的极大数目。类似地,行秩A的线性无关的横行的极大数目。

矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵A。通常表示为r(A),rk(A)或rank A

m × n矩阵的秩最大为mn中的较小者。有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。

目录

  [隐藏]

[编辑]可替代定义

[编辑]用向量组的秩定义

向量组的秩:在一个 m 维线性空间 E 中,一个向量组 F=(C_1,C_2, /cdots , C_n) 的秩表示的是其生成的子空间的维度。考虑 m × n 矩阵 A=[C_1,C_2, /cdots , C_n],将 A 的秩定义为向量组 F 的秩,则可以看到如此定义的 A 的秩就是矩阵 A 的线性无关列向量的极大数目,即 A 的列空间维度(列空间是由A的纵列生成的Fm的子空间)。因为列秩和行秩是相等的,我们也可以定义A的秩为A行空间的维度。

[编辑]用线性映射定义

考虑线性映射

 f_A : F^n /to F^m
 x /mapsto A /cdot x

对于每个矩阵AfA都是一个线性映射,同时,对每个F^n /to F^m 的 线性映射f,都存在矩阵A使得f = fA。也就是说,映射

 /Phi : /mathcal{M}_n (/mathbb{K}) /to /mathcal{L}(F^n,F^m)
 A /mapsto f_A

是一个同构映射。所以一个矩阵A的秩还可定义为fA的像的维度(像与核的讨论参见线性映射)。矩阵A称为fA变换矩阵。这个定义的好处是适用于任何线性映射而不需要指定矩阵,因为每个线性映射有且仅有一个矩阵与其对应。秩还可以定义为nf的维度;秩-零化度定理声称它等于 f的像的维度。

[编辑]性质

我们假定A是在域F上的m × n矩阵并描述了上述线性映射。

  • 只有零矩阵有秩0
  • A的秩最大为min(m,n)
  • f单射,当且仅当A有秩n(在这种情况下,我们称A有“满列秩”)。
  • f满射,当且仅当A有秩m(在这种情况下,我们称A有“满行秩”)。
  • 在方块矩阵A (就是m = n)的情况下,则A可逆的,当且仅当A有秩n(也就是A有满秩)。
  • 如果B是任何n × k矩阵,则AB的秩最大为A的秩和B的秩的小者。
即:秩(AB)≤min(秩(A),秩(B))
推广到若干个矩阵的情况,就是:秩(A 1A 2...A m)≤min(秩(A 1),秩(A 2),...秩(A m))
证明:
考虑矩阵的秩的线性映射的定义,令A、B对应的线性映射分别为 fg,则AB表示复合映射 f·g,它的象 Im f·gg的像 Im g在映射 f作用下的象。然而 Im g是整个空间的一部分,因此它在映射 f作用下的象也是整个空间在映射 f作用下的象的一部分。也就是说映射 Im f·gIm f的一部分。对矩阵就是:秩(AB)≤秩(A)。
对于另一个不等式:秩(AB)≤秩(B),考虑 Im g的一组 :(e 1,e 2,...,e n),容易证明(f(e 1),f(e 2),...,f(e n))生成了空间 Im f·g,于是 Im f·g维度小于等于 Im g的维度。对矩阵就是:秩(AB)≤秩(B)。
因此有:秩(AB)≤min(秩(A),秩(B))。若干个矩阵的情况证明类似。
作为"<"情况的一个例子,考虑积
  /begin{bmatrix}
    0 & 0 //
    1 & 0 //
  /end{bmatrix}
  /begin{bmatrix}
    0 & 0 //
    0 & 1 //
  /end{bmatrix}
两个因子都有秩1,而这个积有秩0。
可以看出,等号成立当且仅当其中一个矩阵(比如说 A)对应的线性映射不减少空间的维度,即是 单射,这时 A是满秩的。于是有以下性质:
  • 如果B是秩nn × k矩阵,则AB有同A一样的秩。
  • 如果C是秩ml × m矩阵,则CA有同A一样的秩。
  • A的秩等于r,当且仅当存在一个可逆m × m矩阵X和一个可逆的n × n矩阵Y使得
  XAY =
  /begin{bmatrix}
    I_r & 0 //
    0 & 0 //
  /end{bmatrix}
这里的I r指示 r ×  r  单位矩阵
证明可以通过 高斯消去法构造性地给出。

[编辑]向量组的线性相关性

mn维列向量排列成n /times m的矩阵A,这个对应矩阵的秩即为原向量组的秩。

原向量组线性相关的充分必要条件为:

r(A) < m

如果

r(A) = m

则向量组线性无关。另外,不存在

r(A) > m

特殊的,若向量的维数n大于向量的个数m,则根据:

r(A) /le m < n

这个向量组必然线性相关。

[编辑]计算

计算矩阵A的秩的最容易的方式是高斯消去法,即利用矩阵的初等变换生成一个行阶梯型矩阵,由于矩阵的初等变换不改变矩阵的秩,因此A行梯阵形式有同A一样的秩。经过初等变换的矩阵的非零行的数目就是原矩阵的秩。

例如考虑4 × 4矩阵

  A =
  /begin{bmatrix}
    2 & 4 & 1 & 3 //
    -1 & -2 & 1 & 0 //
    0 & 0 & 2 & 2 //
    3 & 6 & 2 & 5 //
  /end{bmatrix}

我们看到第2纵列是第1纵列的两倍,而第4纵列等于第1和第3纵列的总和。第1和第3纵列是线性无关的,所以A的秩是2。这可以用高斯算法验证。它生成下列A的行梯阵形式:

  A =
  /begin{bmatrix}
    1 & 2 & 0 & 1 //
    0 & 0 & 1 & 1 //
    0 & 0 & 0 & 0 //
    0 & 0 & 0 & 0 //
  /end{bmatrix}

它有两个非零的横行。

在应用在计算机上的浮点数的时候,基本高斯消去(LU分解)可能是不稳定的,应当使用秩启示(revealing)分解。一个有效的替代者是奇异值分解(SVD),但还有更少代价的选择,比如有支点(pivoting)的QR分解,它也比高斯消去在数值上更强壮。秩的数值判定要求对一个值比如来自SVD的一个奇异值是否为零的依据,实际选择依赖于矩阵和应用二者。

[编辑]应用

计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则方程组只要有一个解。在这种情况下,它有精确的一个解,如果它的秩等于方程的数目。如果增广矩阵的秩大于系数矩阵的秩,则通解有k个自由参量,这里的 k是在方程的数目和秩的差。否则方程组是不一致的。

控制论中,矩阵的秩可以用来确定线性系统是否为可控制的,或可观察的。

[编辑]引用

  • Horn, Roger A. and Johnson, Charles R. Matrix Analysis. Cambridge University Press, 1985. ISBN 0-521-38632-2.
  • Kaw, Autar K. Two Chapters from the book Introduction to Matrix Algebra: 1. Vectors [1] and System of Equations [2]

[编辑]参见

 

  • 1
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值