线性代数 - 秩的计算

秩的计算

秩(Rank)是线性代数中矩阵的一个重要概念。秩表示矩阵中线性无关行或列的最大数目。在不同情况下,秩的计算方式和结果有所不同,以下是一些主要情况的详细说明:

1. 全零矩阵

全零矩阵的秩为零,因为所有行和列都是线性相关的,没有任何线性无关的行或列。

例子:
( 0 0 0 0 0 0 0 0 0 ) \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} 000000000
秩 = 0

2. 单位矩阵

单位矩阵是对角线上全为1,其余元素全为0的矩阵。单位矩阵的秩等于其维数,因为它的行和列都是线性无关的。

例子:
( 1 0 0 0 1 0 0 0 1 ) \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} 100010001
秩 = 3

3. 行列数不同的矩阵

对于行数和列数不同的矩阵,秩是所有非零行(或列)的数目。可以通过高斯消元法将矩阵化为行简化阶梯形矩阵,然后数一下非零行的数目。

例子:
( 1 2 3 4 5 6 ) \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} (142536)
使用高斯消元法化简后:
( 1 2 3 0 − 3 − 6 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \end{pmatrix} (102336)
秩 = 2

4. 方阵

方阵的秩等于它的行数或列数的最大数目。

例子1:非奇异矩阵(方阵满秩)
( 1 2 3 4 ) \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} (1324)
此矩阵是非奇异矩阵,行和列都是线性无关的。
秩 = 2

例子2:奇异矩阵(方阵非满秩)
( 1 2 2 4 ) \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} (1224)
第二行是第一行的2倍,行和列不是线性无关的。
秩 = 1

5. 矩阵行或列重复

如果矩阵中有重复的行或列,这些行或列将线性相关,因此这些重复的行或列将不计算在秩内。

例子:
( 1 2 3 4 5 6 1 2 3 ) \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 1 & 2 & 3 \end{pmatrix} 141252363
第三行是第一行的重复。
使用高斯消元法化简后:
( 1 2 3 0 − 3 − 6 0 0 0 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{pmatrix} 100230360
秩 = 2

6. 矩阵行或列线性相关

当矩阵的行或列是线性组合时,其秩将小于其行数或列数。通过消去线性相关的行或列,我们可以找到秩。

例子:
( 1 2 3 2 4 6 3 6 9 ) \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix} 123246369
第二行是第一行的2倍,第三行是第一行的3倍。
使用高斯消元法化简后:
( 1 2 3 0 0 0 0 0 0 ) \begin{pmatrix} 1 & 2 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} 100200300
秩 = 1

计算方法总结

  1. 高斯消元法:通过初等行变换将矩阵化为行简化阶梯形矩阵,然后数一下非零行的数目。
  2. 行列式:对于方阵,通过计算子矩阵的行列式可以确定秩,最大非零行列式对应的子矩阵的阶数即为矩阵的秩。
  3. 线性无关性判断:通过判断行或列的线性无关性来确定秩。

通过以上方法和实例,可以理解不同情况下如何计算矩阵的秩。

拓展:高斯消元法

高斯消元法(Gaussian Elimination)是一种用于求解线性方程组、求矩阵的秩、以及计算矩阵的逆的算法。其主要步骤包括将矩阵化为行简化阶梯形(Row Echelon Form,REF)或简化行阶梯形(Reduced Row Echelon Form,RREF)。以下是详细步骤和一个示例。

高斯消元法步骤

  1. 选主元(Pivot):从矩阵的第一列开始,找到一个非零元素作为主元(通常是该列的第一个非零元素)。

  2. 行交换(Row Swap):如果当前行的主元为零,则交换该行和下一行,使主元非零。

  3. 消去(Eliminate):通过行初等变换,将主元下面的元素变为零。具体操作是,用当前行的倍数去减去其他行。

  4. 重复:对主元右下方的子矩阵重复上述步骤,直到矩阵变为行简化阶梯形。

  5. 化简(仅对于RREF):在得到REF后,进一步消去主元上方的元素,使每列中只有一个1,其余为零,得到简化行阶梯形。

示例

我们以一个具体的3x3矩阵为例,进行高斯消元。

原始矩阵:
A = ( 2 1 − 1 − 3 − 1 2 − 2 1 2 ) A = \begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2 \end{pmatrix} A= 232111122

Step 1: 将第1列第1行的主元归一
( 2 1 − 1 − 3 − 1 2 − 2 1 2 ) \begin{pmatrix} 2 & 1 & -1 \\ -3 & -1 & 2 \\ -2 & 1 & 2 \end{pmatrix} 232111122
我们用第1行的2作为主元,不需要行交换。

Step 2: 消去第1列的其余元素
R 2 = R 2 + 3 2 R 1 R2 = R2 + \frac{3}{2}R1 R2=R2+23R1
R 3 = R 3 + R 1 R3 = R3 + R1 R3=R3+R1
( 2 1 − 1 0 1 2 1 2 0 2 1 ) \begin{pmatrix} 2 & 1 & -1 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 2 & 1 \end{pmatrix} 20012121211

Step 3: 将第2列第2行的主元归一
( 2 1 − 1 0 1 2 1 2 0 2 1 ) \begin{pmatrix} 2 & 1 & -1 \\ 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 2 & 1 \end{pmatrix} 20012121211
将第2行的 1 2 \frac{1}{2} 21作为主元,乘以2:
R 2 = 2 R 2 R2 = 2R2 R2=2R2
( 2 1 − 1 0 1 1 0 2 1 ) \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 2 & 1 \end{pmatrix} 200112111

Step 4: 消去第2列的其余元素
R 3 = R 3 − 2 R 2 R3 = R3 - 2R2 R3=R32R2
( 2 1 − 1 0 1 1 0 0 − 1 ) \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix} 200110111

Step 5: 将第3列第3行的主元归一
( 2 1 − 1 0 1 1 0 0 − 1 ) \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{pmatrix} 200110111
将第3行的-1作为主元,乘以-1:
R 3 = − 1 R 3 R3 = -1R3 R3=1R3
( 2 1 − 1 0 1 1 0 0 1 ) \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} 200110111

Step 6: 消去第3列的其余元素
R 1 = R 1 + R 3 R1 = R1 + R3 R1=R1+R3
R 2 = R 2 − R 3 R2 = R2 - R3 R2=R2R3
( 2 1 0 0 1 0 0 0 1 ) \begin{pmatrix} 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} 200110001

Step 7: 将第1列第1行的主元归一
R 1 = 1 2 R 1 R1 = \frac{1}{2}R1 R1=21R1
( 1 1 2 0 0 1 0 0 0 1 ) \begin{pmatrix} 1 & \frac{1}{2} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} 1002110001

至此,矩阵已化为简化行阶梯形形式(RREF)。这个过程展示了高斯消元法的主要步骤,包括行交换、主元选择、行消去和化简。使用这个方法可以方便地求解线性方程组、计算矩阵的秩和逆。

  • 8
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值