欧拉函数

定义:1-N中与N互质的数的个数被称为欧拉函数,即为phi(n)
求欧拉函数主要由两类问题:

  1. 求单个数的欧拉函数O(sqrt(n))
  2. 求1-N的欧拉函数O(n)

对于第一类问题,我们可以使用分解质因数的方法来求,这个可以用容斥原理很容易证明。

int phi(int n) {
	int ans = n;
	for (int i = 2; i <= n / i; i++) {
		if (n % i == 0) ans = ans / i * (i - 1);
		while (n % i == 0) n /= i;
	}
	if (n > 1) ans = ans / n * (n - 1);
	return ans;
}

对于第二类问题,我们可以通过对线性筛略加改进即可求。

void euler_linear_sieve {
    for (int i = 2; i <= n; i++) {
        if (!st[i]) prime[++cnt] = i, phi[i] = i - 1;
        for (int j = 1; prime[j] <= n / i; j++) {
            st[prime[j] * i] = true;
            if (i % prime[j] == 0) {
                phi[prime[j] * i] = prime[j] * phi[i];
                break;
            }
            else phi[prime[j] * i] = (prime[j] - 1) * phi[i];
        }
    }
}

对于欧拉筛的正确性,在这里给出说明:

  1. 对于质数我们都知道phi[p] = p - 1,我们只需考虑合数,由线性筛知每个合数均会被筛掉且只会被其最小质因子筛掉,所以如果我们在筛掉合数时顺便把合数的欧拉函数求出,那么我们一定可以保证每个合数的欧拉函数都会被计算到且只会被计算一次。
  2. 筛合数时只会有两种情况,如果当前i % prime[j] == 0,那么phi[i * prime[j]] = prime[j] * phi[i],否则phi[i * prime[j]] = prime[j] * phi[i] * (1 - 1 / prime[j]) = (prime[j] - 1) * phi[i]。

欧拉函数的应用:欧拉定理
如果a与n互质,则有a ^ phi(n) = 1 (mod n)。
证明:
设与n互质的phi[n]个数为b1, b2, … , bphi[n],由于a与n互质所以ab1, ab2, … , abphi[n]也与n互质,并且者n个数在模n的意义下两两不相同, 由于与1-n中与n互质的数只有phi[n]个,所以b1b2*…b[phi[n]] = a^phi[n]b1b2b[phi[n]] (mod n),又因为b1b2*…*b[phi[n]]与n互质,所以两边可以同时除掉,于是就得到了欧拉定理。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值