欧拉函数总结


前言

1.定义

欧拉函数φ(n)= 不大于n 且 与n互质 的正整数的个数(包括1)。
用式子表示则为:φ(n)= ∑ i = 1 n [ g c d ( i , n ) = = 1 ] \sum^{n}_{i=1}{[gcd(i,n)==1]} i=1n[gcd(i,n)==1]
比如φ(1)=1,只有1与之互质;
φ(2)=1,也只有1与2互质。

2.与模n的简化剩余系的区别

之前介绍过简化剩余系的概念,此时加上一个限定条件:模n,就把数据都控制在[0,n)的范围内了。
令这个集合为 z n z_n zn,其中包含的元素为小于n且与n互质的值。

前者为不大于,后者为小于
可以看出两者的1区别在于对1的讨论,1的 z n z_n zn为空,但φ(1)=1;
其余大于1的情况下,n都不会与n互质,故两者表示一致。
式子表示为:
If n>1 | z n z_n zn|=φ(n) ;
else | z n z_n zn|=0;


一、p为质数的情况

1.φ(p )=p-1

证明

若p为素数,p仅可以唯一分解出1和p两个因子,对于[1,p)中的数来说,唯一分解的结果中不会包含因子p,所以得到结论:质数与小于它的每一个数,都构成互质关系
也就是:φ(p )=p-1

2.φ( p k p^k pk)= p k p^k pk- p k − 1 p^{k-1} pk1

证明

p k p^k pk进行唯一分解,可以得到因子1和p,此时 p k p^k pk必定大于1,所以我们讨论在1到 p k p^k pk-1中的情况。
总共有 p k p^k pk-1个数,其中与 p k p^k pk不互质也就是含有因子p,不妨将这些数枚举一下:
p,2p,3p……( p k − 1 − 1 p^{k-1}-1 pk11)p
不互质的数总共有 p k − 1 − 1 p^{k-1}-1 pk11个,那么用总数减去这一部分剩下的就是与 p k p^k pk互质的部分了。
p k − 1 − p^k-1- pk1 ( p k − 1 − 1 ) (p^{k-1}-1) pk11 = p k − p^k- pk p k − 1 p^{k-1} pk1


二、φ( a b ab ab)的讨论

1.a与b互质时,φ( a b ab ab)=φ( a a a)φ( b b b)满足积性函数

1.a,b均为质数时的证明

若为质数,已知φ(p )=p-1,那么φ( a a a) φ( b b b) = (a-1)(b-1);
ab此时大于1,令n=ab,所以φ( n n n)=| z n z_n zn|
对n进行唯一分解,可得因子1、a和b,所以用集合{1,2…n-1}减去与a,b不互质的数,剩下的元素就都与n互质。
z n z_n zn={1,2,3…n-1} − - {a,2a…(b-1)*a} − - {b,2b…(a-1)*b}
可以看出后两个集合不会出现重复元素,所以
| z n z_n zn|=n-1-(b-1)-(a-1)
=ab-1-b+1-a+1
=ab-a-b+1
=(a-1)(b-1)
=φ( a a a)φ( b b b)

φ( a b ab ab)=φ( a a a)φ( b b b)

2.a,b互质时的证明

在这里插入图片描述

3.例题·Euler Function

Euler Function

题目大意是给定一个k值,求出φ( n n n)为合数的情况下第k小的φ( n n n)所对应的n
φ( 1 1 1)=1;
φ( 2 2 2)=1;
φ( 3 3 3)=2;
φ( 4 4 4)=2;
φ( 5 5 5)=4;
φ( 6 6 6)=2;
φ( 7 7 7)=6;
……
当k为1时,φ( 5 5 5)=4,是满足合数的第一个数,所以输出5;
当k为2时,φ( 7 7 7)=6,是满足合数的第二个数,所以输出7;

思路:
讨论一个大于1的数n,n可以被唯一分解,得:
n= p 1 k 1 p_{1}^{k_1} p1k1 p 2 k 2 p_{2}^{k_2} p2k2 p m k m p_{m}^{k_m} pmkm
这几个质因数之间满足互质条件,所以可得:
φ(n) = φ( p 1 k 1 p_{1}^{k_1} p1k1)φ( p 2 k 2 p_{2}^{k_2} p2k2)…φ( p m k m p_{m}^{k_m} pmkm)
再结合上方p为质数时:φ( p k p^k pk)= p k p^k pk- p k − 1 p^{k-1} pk1= p k − 1 p^{k-1} pk1(p-1),可得:
φ(n) = p 1 k 1 − 1 p_1^{k_1-1} p1k11 ( p 1 − 1 ) (p_1-1) (p11) p 2 k 2 − 1 p_2^{k_2-1} p2k21 ( p 2 − 1 ) (p_2-1) (p21) p m k m − 1 p_m^{k_m-1} pmkm1 ( p m − 1 ) (p_m-1) (pm1)

接下来我们的任务就是讨论φ(n)何时为质数,何时为合数。
继续结合式子φ(n) = p 1 k 1 − 1 p_1^{k_1-1} p1k11 ( p 1 − 1 ) (p_1-1) (p11) p 2 k 2 − 1 p_2^{k_2-1} p2k21 ( p 2 − 1 ) (p_2-1) (p21) p m k m − 1 p_m^{k_m-1} pmkm1 ( p m − 1 ) (p_m-1) (pm1)进行讨论:

1.若n存在一个质因子 q ≥ 5 q\geq5 q5,那么式子中就存在一项为(q-1),已知q为质数且 q ≥ 5 q\geq5 q5,q必定为奇数,那么(q-1)必定为偶数,该偶数因子中一定有2,而且除了2还有另外的因子,所以此时的φ(n) 必定为合数

2.那么我们接下来的任务就是讨论质因子2,3的情况:
关于2,那么在φ(n) 中的项为 2 k − 1 2^{k-1} 2k1 *(2-1),
当k>2时, 2 k − 1 2^{k-1} 2k1中包含因子4,所以φ(n) 必定为合数

关于3,在φ(n) 中的项为 3 k − 1 3^{k-1} 3k1 *(3-1),即 3 k − 1 3^{k-1} 3k1 *2,
已经有了一个因子2,只要 3 k − 1 3^{k-1} 3k1可以提供另一个因子,也就是k>1,就有φ(n) 必定为合数

综上所述三种条件任满足其一都可以使得φ(n)必定为合数,反过来说也就是三个条件都不满足就可能为质数。
那么我们此时再看1,2,3,4,6,24的欧拉函数的情况:
φ( 1 1 1)=1,为质数;
φ( 2 2 2)=1,为质数;
φ( 3 3 3)=2,为质数;
φ( 4 4 4)=2,为质数;
φ( 6 6 6)=2,为质数;
φ( 24 24 24)=8,为合数;
也就是说只有1,2,3,4,6的欧拉函数为质数,其余皆为合数。
那么给定k时,我们输出的答案就是:k+4+[k>1]

#include<bits/stdc++.h> 
using namespace std;
int main(){
	int t;
	cin>>t;
	while(t--){
		int k;
		cin>>k;
		if(k==1)cout<<5<<endl;
		else cout<<k+5<<endl;
	}
}

4.推论:a为奇数时,φ(2a) = φ(2)*φ(a)=φ(a)。

2.正整数a,b,若d=gcd(a,b),则φ( a b ab ab) = φ(a)φ(b) d φ ( d ) \frac{d}{φ(d)} φ(d)d

证明

证明的思路与上方一致,都是进行唯一分解,再利用积性函数的性质来处理。
在这里插入图片描述

3.若b是质数,且b|a,则 φ(ab)=φ(a)b

证明

有条件可知,b为a的一个质因子,那么a就可以表示为 k b n kb^n kbn,且k与b满足互质关系,可得:
φ(a)=φ( k b n kb^n kbn)=φ(k)φ( b n b^n bn)
又根据b为质数,式子进一步转化为:
φ(a)=φ(k) b n − 1 ( b − 1 ) b^{n-1}(b-1) bn1(b1) → \rightarrow φ(k)= φ ( a ) b n − 1 ( b − 1 ) \frac{φ(a)}{b^{n-1}(b-1)} bn1(b1)φ(a)

再讨论φ(ab),同理:
φ(ab)=φ( k b n + 1 kb^{n+1} kbn+1)=φ(k)φ( b n + 1 b^{n+1} bn+1)=φ(k) b n ( b − 1 ) b^{n}(b-1) bn(b1)

结合两式可解得:
φ(ab)= φ ( a ) b n − 1 ( b − 1 ) \frac{φ(a)}{b^{n-1}(b-1)} bn1(b1)φ(a) b n ( b − 1 ) b^{n}(b-1) bn(b1)=φ(a)b
证毕


三、求欧拉函数

1.φ(n) = n n n ∏ i = 1 m ( 1 − 1 p i ) \prod_{i=1}^{m} (1-\frac{1}{p_i}) i=1m(1pi1)

1.证明

对n进行唯一分解,可得n= p 1 k 1 p_{1}^{k_1} p1k1 p 2 k 2 p_{2}^{k_2} p2k2 p m k m p_{m}^{k_m} pmkm
同上方一样,利用互质关系质数性质,可得:
φ(n) = p 1 k 1 p_1^{k_1} p1k1 ( 1 − 1 p 1 ) (1-\frac{1}{p_1}) (1p11) p 2 k 2 p_2^{k_2} p2k2 ( 1 − 1 p 2 ) (1-\frac{1}{p_2}) (1p21) p m k m p_m^{k_m} pmkm ( 1 − 1 p m ) (1-\frac{1}{p_m}) (1pm1)
将式子进行简单整理,可得:
φ(n) =n ( 1 − 1 p 1 ) (1-\frac{1}{p_1}) (1p11) ( 1 − 1 p 2 ) (1-\frac{1}{p_2}) (1p21) ( 1 − 1 p m ) (1-\frac{1}{p_m}) (1pm1)

2.代码

typedef long long ll;
ll euler(ll n){ //返回euler(n)   
     ll res=n,a=n;  
     for(ll i=2;i*i<=a;i++){  
         if(a%i==0){  
             res=res/i*(i-1);//先进行除法是为了防止中间数据的溢出   
             while(a%i==0) a/=i;  
         }  
     }  
     if(a>1) res=res/a*(a-1);  
     return res;  
} 

2.递推打表

1.思路:

在这里插入图片描述

2.关键代码

const int N=1e6+10;
int primes[N], euler[N], cnt;
bool st[N];
void get_eulers(int n){ //欧拉筛的扩展
	euler[1] = 1;
	for (int i=2; i <= n; i++ ){
		if ( !st[i] ){
			primes[cnt++] = i;
			euler[i] = i-1;
		}
		for ( int j=0; primes[j] <= n/i; j++ ){
			st[ primes[j]*i ] = true;
			if ( i % primes[j] == 0 ) {
				euler[ i*primes[j] ] = euler[i] * primes[j];
				break;
			}
			euler[ i*primes[j] ] = euler[i] * ( primes[j]-1 );
		}
	}
}

3.模板题·Farey Sequence

Farey Sequence

大意:给定一个数n(2<=n<= 1 0 6 10^6 106),求分母不大于n的既约真分数的个数

思路:
既约真分数,意味着分子分母为互质关系,且分子小于分母,很容易联想到欧拉函数,这道题就是求欧拉函数之和,不过不包含φ(1),因为分数 1 1 \frac{1}{1} 11不满足既约真分数的要求。
所以 F(n)= ∑ i = 2 n φ ( i ) \sum_{i=2}^n φ(i) i=2nφ(i)
打表可过,注意范围,使用Long Long

代码:

#include<iostream> 
using namespace std;
const int N=1e6+10;
long long primes[N], euler[N], cnt;
bool st[N];
void get_eulers(int n){ //欧拉筛的扩展
	euler[1] = 1;
	for (int i=2; i <= n; i++ ){
		if ( !st[i] ){
			primes[cnt++] = i;
			euler[i] = i-1;
		}
		for ( int j=0; primes[j] <= n/i; j++ ){
			st[ primes[j]*i ] = true;
			if ( i % primes[j] == 0 ) {
				euler[ i*primes[j] ] = euler[i] * primes[j];
				break;
			}
			euler[ i*primes[j] ] = euler[i] * ( primes[j]-1 );
		}
	}
}
int main(){
	get_eulers(1e6+8);
	euler[0]=-1;
	for(int i=1;i<1e6+5;i++)
		euler[i]+=euler[i-1];
	int t;
	while(cin>>t&&t){
		cout<<euler[t]<<endl;
	}
}

4.例题·Longge 的问题

Longge 的问题

大意:给定n,求 ∑ i = 1 n \sum_{i=1}^n i=1n g c d ( i , n ) gcd(i,n) gcd(i,n),(0<n<= 2 32 2^{32} 232

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
//const int N= 1e6;
//int euler[N];
//bool st[N];
//int primes[N];
//int cnt;
//void get_eulers(int n){
//	euler[1] = 1;
//	for (int i=2; i <= n; i++ ){
//		if ( !st[i] ){
//			primes[cnt++] = i;
//			euler[i] = i-1;
//		}
//		for ( int j=0; primes[j] <= n/i; j++ ){
//			st[ primes[j]*i ] = true;
//			if ( i % primes[j] == 0 ) {
//				euler[ i*primes[j] ] = euler[i] * primes[j];
//				break;
//			}
//			euler[ i*primes[j] ] = euler[i] * ( primes[j]-1 );
//		}
//	}
//}
ll euler(ll x){  
    ll ans=x,tp=sqrt(x);  
    for(ll i=2;i<=tp;++i)  
        if(x%i==0)  {  
            ans=ans-ans/i;  
            while(x%i==0)  x/=i;   
        }  
    if(x>1)  ans=ans-ans/x;  
    return ans;  
}  
int main(){
	ll n; 
//	cin>>n;
	scanf("%lld",&n);
//	get_eulers(n);
	ll ans=0,t=sqrt(n);
	for(ll i=1;i<=t;i++){
		if(n%i==0)ans+=i*euler(n/i)+(n/i)*euler(i);
	}
	if(t*t==n)ans-=t*euler(t);
//	cout<<ans<<endl;
	printf("%lld\n",ans);
	return 0;
}

四 、其余性质

1.n= ∑ d ∣ n \sum_{d|n} dn φ ( d ) φ(d) φ(d)

1.证明:

在这里插入图片描述

2.例题·Count a * b

Count a * b

2. ∑ i = 1 n \sum_{i=1}^n i=1n i i i [ g c d ( i , n ) = = 1 ] [gcd(i,n)==1] [gcd(i,n)==1]= n 2 \frac{n}{2} 2n φ ( n ) φ(n) φ(n)

1.证明:

2.例题·LCM SUM

LCM SUM


  • 2
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值