
Pytorch学习
勤奋的小学生
每天一篇学习笔记,与你分享我的学习历程,共同走进人工智能的世界。期待你与我共同成长。同时,欢迎指导。
展开
-
Pytorch系列:Pytorch的简单操作(三) ---- 张量的基础操作
一、张量的拼接与切分1. torch.cat(tensor, dim=0, out=None)功能: 将张量按维度dim进行拼接参数:tensors:张量序列dim:要拼接的维度>>> t = torch.ones((2, 3))>>> torch.cat([t, t], dim=0)tensor([[1., 1., 1.], ...原创 2019-12-17 16:03:37 · 2003 阅读 · 0 评论 -
Pytorch系列:Pytorch的简单操作(二) ---- 张量的创建
一、Tensor概念 张量是一个多维数组,它是标量、向量、矩阵的高维拓展。张量是三维及以上的数组。标量:是一个常数,为0维张量向量:是一行或者一列数组成,为1维张量矩阵:包含行和列两个维度。是2维张量。torch.Tensor包含的属性:dtype:张量的数据类型,如torch.Floa...原创 2019-12-17 16:01:11 · 4861 阅读 · 0 评论 -
Pytorch系列:Pytorch的简单操作(一) ---- Pytorch的优势机制
一、计算图与动态机制 计算图是一个表示运算的有向无环图。如果学过图论,应该对有向无环图这个概念很熟悉。一个有向无环图包含“结点”和“边”。TensorFlow和PyTorch都用到计算图。Pytorch中结点表示数据,如向量、矩阵、张量等。边表示运算,如加减乘除等。TensorFlow的数据流图中结点表...原创 2019-12-17 15:59:37 · 852 阅读 · 0 评论 -
Pytorch系列:写在前面的话。。。
本博客的内容主要是作者在学习过程中做的一个笔记,如果有幸有人觉得还可以,我们可以一起交流学习。没有其他目的。一、Pytorch简介 PyTorch是最近一个很火的深度学习框架,可以与TensorFlow一较...原创 2019-12-16 10:42:34 · 293 阅读 · 1 评论 -
Pytorch学习之torch----数学操作(三)
1. torch.reciprocal(input, out=None)说明:返回一个新张量,包含输入input张量每个元素的倒数。参数:input(Tensor) -- 输入张量 out(Tensor, 可选) -- 输出张量>>> a = torch.randn(5)>>> atensor([ 0.6535, 1.3616, -1....原创 2019-07-17 09:43:28 · 10379 阅读 · 0 评论 -
Pytorch学习之torch----数学操作(二)
1. torch.floor(input, out=None)说明:床函数,返回一个新张量,包含输入input张量每个元素的floor,即不小于元素的最大整数。参数:input(Tensor) -- 输入张量 out(Tenosr, 可选) -- 输出张量>>> a = torch.randn(4)>>> torch.floor(a)ten...原创 2019-07-17 09:43:15 · 12523 阅读 · 2 评论 -
Pytorch学习之torch----比较操作(Comparison Ops)
1. torch.eq(input, other, out=None)说明: 比较元素是否相等,第二个参数可以是一个数,或者是第一个参数同类型形状的张量参数:input(Tensor) ---- 待比较张量other(Tenosr or float) ---- 比较张量或者数out(Tensor,可选的) ---- 输出张量返回值: 一个torch.ByteTensor张量,包含了...原创 2019-07-14 15:38:59 · 23759 阅读 · 0 评论 -
Pytorch学习之torch----Reduction Ops
1. torch.cumprod(input, dim, out=None)说明: 返回输入沿指定维度的累积积。如果输入是一个N元向量,则结果也是一个N元向量,第i个输出元素值为 yi=x1∗x2∗...∗xiy_{i} = x_{1} * x_{2} * ... * x_{i}yi=x1∗x2∗...∗xi参数:input(Tensor) ---- 输入张量dim(int) -...原创 2019-07-14 14:11:59 · 2706 阅读 · 0 评论 -
Pytorch学习之torch----数学操作(一)
1. torch.abs(input, out=None)说明:计算输入张量的每个元素绝对值参数:input(Tensor) -- 输入张量 out(可选) -- 输出>>> import torch>>> torch.abs(torch.FloatTensor([-1, -2, 3]))tensor([1., 2., 3.])2. t...原创 2019-07-13 21:35:20 · 11062 阅读 · 2 评论 -
Pytorch学习之torch----随机抽样、序列化、并行化
1. torch.manual_seed(seed)说明:设置生成随机数的种子,返回一个torch._C.Generator对象。使用随机数种子之后,生成的随机数是相同的。参数:seed(int or long) -- 种子>>> import torch>>> torch.manual_seed(1)<torch._C.Generat...原创 2019-07-12 22:09:03 · 12137 阅读 · 0 评论 -
Pytorch学习之torch----索引、切片、连接、变异操作
1. torch.cat(seq, dim=0, out=None)说明:在给定维度上对输入的张量序列seq进行连接操作参数:seq(Tensor的序列) -- 可以是相同类型的Tensor的任何Python序列 dim(int, 可选) -- 张量连接的维度,按dim维度连接张量 out(Tensor,可选) -- 输出参数>>> x = torch.ran...原创 2019-06-24 16:06:40 · 11915 阅读 · 0 评论 -
Pytorch学习之torch----创建操作
1. torch.eye(n, m=None, out=None)说明:创建一个2维张量,对角线数字为1, 其他位置为0。也就是一个单位矩阵。参数:n -- 行数, m -- 列数,如果为None,默认等于n, out -- 输出张量>>> import torch>>> torch.eye(3)tensor([[1., 0., 0.],...原创 2019-06-23 16:26:34 · 9614 阅读 · 1 评论