勤奋的小学生
码龄4年
  • 432,939
    被访问
  • 100
    原创
  • 1,264,902
    排名
  • 414
    粉丝
关注
提问 私信

个人简介:每天一篇学习笔记,与你分享我的学习历程,共同走进人工智能的世界。期待你与我共同成长。同时,欢迎指导。

  • 加入CSDN时间: 2018-03-28
博客简介:

励志的小胡子

博客描述:
交流学习
查看详细资料
个人成就
  • 获得343次点赞
  • 内容获得120次评论
  • 获得2,398次收藏
创作历程
  • 66篇
    2019年
  • 38篇
    2018年
成就勋章
TA的专栏
  • MATLAB
    19篇
  • CNN模型
    8篇
  • 特征工程
    3篇
  • 《机器学习》读书笔记
    1篇
  • python语言(python2)
    2篇
  • java语言基础
    9篇
  • Matlab语言基础
    19篇
  • MATLAB神经网络
    2篇
  • Exception错误总结
    1篇
  • 机器学习算法
    4篇
  • 论文
    7篇
  • TensorFlow
    11篇
  • 网络爬虫
    9篇
  • Keras学习笔记
    3篇
  • 生成对抗网络
    9篇
  • GitHub
    1篇
  • Pytorch学习
    12篇
  • ”深度学习“--读书笔记
    1篇
兴趣领域 设置
  • 人工智能
    opencv语音识别计算机视觉机器学习深度学习神经网络自然语言处理tensorflowpytorch图像处理nlp
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

Pytorch系列:Pytorch的简单操作(三) ---- 张量的基础操作

一、张量的拼接与切分1. torch.cat(tensor, dim=0, out=None)功能: 将张量按维度dim进行拼接参数:tensors:张量序列dim:要拼接的维度>>> t = torch.ones((2, 3))>>> torch.cat([t, t], dim=0)tensor([[1., 1., 1.], ...
原创
发布博客 2019.12.17 ·
1449 阅读 ·
3 点赞 ·
0 评论

Pytorch系列:Pytorch的简单操作(二) ---- 张量的创建

一、Tensor概念        张量是一个多维数组,它是标量、向量、矩阵的高维拓展。张量是三维及以上的数组。标量:是一个常数,为0维张量向量:是一行或者一列数组成,为1维张量矩阵:包含行和列两个维度。是2维张量。torch.Tensor包含的属性:dtype:张量的数据类型,如torch.Floa...
原创
发布博客 2019.12.17 ·
2515 阅读 ·
1 点赞 ·
0 评论

Pytorch系列:Pytorch的简单操作(一) ---- Pytorch的优势机制

一、计算图与动态机制        计算图是一个表示运算的有向无环图。如果学过图论,应该对有向无环图这个概念很熟悉。一个有向无环图包含“结点”和“边”。TensorFlow和PyTorch都用到计算图。Pytorch中结点表示数据,如向量、矩阵、张量等。边表示运算,如加减乘除等。TensorFlow的数据流图中结点表...
原创
发布博客 2019.12.17 ·
435 阅读 ·
0 点赞 ·
0 评论

Pytorch系列:写在前面的话。。。

        本博客的内容主要是作者在学习过程中做的一个笔记,如果有幸有人觉得还可以,我们可以一起交流学习。没有其他目的。一、Pytorch简介        PyTorch是最近一个很火的深度学习框架,可以与TensorFlow一较...
原创
发布博客 2019.12.16 ·
143 阅读 ·
0 点赞 ·
1 评论

CNN模型之GoogLeNet(Inception) V3

一、介绍        2015年,谷歌团队提出Inception V3,新的网络有42层。主要的创新点是任意n×nn\times nn×n的卷积都可以分解为1×n1\times n1×n->n×1n\times 1n×1代替。这样可以增强表达能力,减小参数。二、网络结构三、总结 &nb...
原创
发布博客 2019.11.10 ·
602 阅读 ·
0 点赞 ·
0 评论

CNN模型之GoogLeNet(Inception) v2

一、介绍         2015年谷歌团队提出了Inception V2,首次提出了批量(Batch Normalization)归一化方法,可以提高网络的收敛速度。应用范围广泛。主要的创新点包括:Batch Normalization:在神经网络的每层计算中,参数变化导致数据分布不一致,会产生数据的协方差偏移...
原创
发布博客 2019.11.10 ·
274 阅读 ·
0 点赞 ·
0 评论

特征工程入门与实践----特征增强

        特征增强是对数据的进一步修改,我们开始清洗和增强数据。主要涉及的操作有识别数据中的缺失值删除有害数据输入缺失值对数据进行归一化/标准化1. 识别数据中的缺失值        特征增强的第一种方法是识别数据的缺...
原创
发布博客 2019.10.04 ·
3520 阅读 ·
0 点赞 ·
0 评论

特征工程入门与实践----特征理解

        特征理解,简单说就是理解数据中都有什么,对数据的理解方便我们认清数据,从而对数据进行操作,构造有用的特征。我们将从以下几个方面来认清数据:结构化数据与非结构化数据定量数据与定性数据数据的4个等级探索性数据分析和数据可视化描述性统计1. 结构化数据和非结构化数据结构化(有组织)数据:分成...
原创
发布博客 2019.10.04 ·
855 阅读 ·
0 点赞 ·
0 评论

特征工程入门与实践----特征工程简介

        人工智能的发展,让我们将那些需要手动操作才能处理的问题,让计算机也可以解决。例如,自然语言处理、人脸识别和图片分类等。因此,我们需要借助机器学习的知识来构建一个AI系统,从用户那里读取到原始数据,让计算机来帮助我们达到识别的目的。为了解决某个问题,需要收集大量的数据,这些数据都是在实际的情况中自然形成的...
原创
发布博客 2019.10.04 ·
867 阅读 ·
0 点赞 ·
0 评论

CNN模型之GoogLeNet

一、介绍        GoogLeNet,2014年由Google团队的Christian Szegedy等人提出,为了向LeNet致敬,所以取名GoogLeNet。2014年的ILSVRC分类任务中力压VGGNet赢得了分类任务的冠军。又名Inception。这个网络主要的特点是提高了网络内部计算资源的利用。从网...
原创
发布博客 2019.09.26 ·
664 阅读 ·
0 点赞 ·
0 评论

CNN模型之VGGNet

一、介绍        VGGNet是于2014年由牛津大学计算机视觉组和DeepMind公司共同研究的。在2014年的ILSVRC比赛上获得了分类项目的第二名和定位项目的第一名。这个网络据说是基于NIN网络的思想。与比赛中的第一名GooLeNet从NIN开始向两个方向发展。VGGNet的理念是更深的网络性能更好。因...
原创
发布博客 2019.09.25 ·
375 阅读 ·
0 点赞 ·
0 评论

CNN模型之NIN

一、介绍        NIN网络是由Min Lin等人在2014年提出的一个网络嵌套模型,使用微神经网络替换卷积神经网络中的卷积核。通过微神经网络来抽象感受野内的数据。称这种微神经网络结构为mplconv。这篇论文的创新之处主要体现在两个地方,分别是:使用微神经网络替换传统卷积神经网络的卷积核。使用全局平均池...
原创
发布博客 2019.09.25 ·
770 阅读 ·
0 点赞 ·
0 评论

CNN模型之ZFNet

一、介绍        ZFNet是Matthew D.Zeiler于2013年提出,并获得了13年ImageNet的冠军。2012年AlexNet问世,并在ImageNet竞赛中取得了优异的成绩,也证明了大的卷积网路的性能优异,但是我们并不知道为什么CNN性能好。因此,这篇论文介绍了一个可视化技术来了解隐藏层做了什...
原创
发布博客 2019.09.16 ·
277 阅读 ·
0 点赞 ·
0 评论

CNN模型之AlexNet

一、介绍        AlexNet是Alex Krizhevsky等人2012年提出。这个模型具有重大的意义,将ImageNet ILSVRC-2010竞赛的120万张图片1000个类别。top-1错误率为37.5%,top-5错误率为17.0%。在2012年的比赛中,将top-5错误率降到了15.3%,相较于第...
原创
发布博客 2019.09.05 ·
392 阅读 ·
0 点赞 ·
1 评论

周志华《机器学习》读书笔记----第二章:模型评估与选择

        机器学习要做的工作可以这样理解:给定一些数据,在数据上训练模型,得到能解决我们实际问题的模型。在这个过程中,数据的处理,模型的选择,模型的评估都需要花费一些时间来处理。这节内容就是模型的选择与评估。一、经验误差与过拟合       ...
原创
发布博客 2019.09.05 ·
347 阅读 ·
0 点赞 ·
0 评论

CNN模型之LeNet-5

一、介绍        卷积神经网络是当前深度学习领域比较火的研究方法。其应用主要是在计算机视觉上。例如,图像分类,目标检测,人脸识别等等。并且已经在这些领域取得了相当大的成就。本文主要介绍卷积神经网络的开篇之作:LeNet-5。LeNet-5由Y. LeCun 在1998年发表的文章《Gradient-Based ...
原创
发布博客 2019.08.26 ·
372 阅读 ·
0 点赞 ·
0 评论

AI圣经《深度学习》读书笔记----第二章:线性代数

        线性代数是数学的一个分支,应用于科学和工程中。线性代数主要是面向连续数学,而非离散数学。掌握好线性代数对于学习机器学习算法是必要的,尤其是深度学习算法。因此,本章学习必要的线性代数知识。知识点一:标量、向量、矩阵和张量标量(scalar): 一个标量就是一个单独的数,不同于线性代数中研究的其他大...
原创
发布博客 2019.08.20 ·
208 阅读 ·
0 点赞 ·
0 评论

AI圣经《深度学习》读书笔记----第一章:引言

        这本书从我开始学习深度学习时,就买了这本书。但是,因为自身知识储备不够,觉得这本书很难。多次想学习这本书,但是都失败了。距离本次学习,已经时隔一年。希望这次能将这本书看完,学习书中的知识。并通过博客的方式,记录自己学习的过程和对知识进行总结。一、介绍    ...
原创
发布博客 2019.08.15 ·
316 阅读 ·
1 点赞 ·
0 评论

Pytorch学习之torch----数学操作(三)

1. torch.reciprocal(input, out=None)说明:返回一个新张量,包含输入input张量每个元素的倒数。参数:input(Tensor) -- 输入张量 out(Tensor, 可选) -- 输出张量>>> a = torch.randn(5)>>> atensor([ 0.6535, 1.3616, -1....
原创
发布博客 2019.07.17 ·
7731 阅读 ·
3 点赞 ·
0 评论

Pytorch学习之torch----数学操作(二)

1. torch.floor(input, out=None)说明:床函数,返回一个新张量,包含输入input张量每个元素的floor,即不小于元素的最大整数。参数:input(Tensor) -- 输入张量 out(Tenosr, 可选) -- 输出张量>>> a = torch.randn(4)>>> torch.floor(a)ten...
原创
发布博客 2019.07.17 ·
7095 阅读 ·
0 点赞 ·
2 评论
加载更多