【论文阅读】A Review of Obstructive Sleep Apnea Detection Approaches

【论文阅读】A Review of Obstructive Sleep Apnea Detection Approaches
在这里插入图片描述

一、背景

多导睡眠图(PSG)是OSA诊断的金标准,可测量多个传感器来记录呼吸气流,呼吸运动,血氧饱和度(SpO2),脑电图(EEG),眼电图(EOG),肌电图(EMG),心电图(ECG)和身体位置[3]。在PSG记录过程中,如果患者已报告所指示的症状并每小时睡眠5次或更多次阻塞性呼吸事件,则诊断为OSA [1]。或者,如果检测到阻塞性呼吸事件的频率大于或等于15个事件/小时,则可以诊断OSA,而与相关症状无关。OSA严重程度可定义为轻度(5≤AHI <15 e / h),中度(15≤AHI <30 e / h)或严重(AHI≥30 e / h)。

二、方法

文献综述涵盖了2003年至2017年之间发表的论文。使用Web of Science,IEEE Explorer,PubMed,包含的文章和各种期刊中引用的文献进行搜索。搜索中使用的关键词是“算法和睡眠呼吸暂停”,“血氧定量和呼吸暂停”,“心电图和呼吸暂停”,“呼吸分析和呼吸暂停”,“打nor和呼吸暂停”,“声音和呼吸暂停”和“呼吸暂停和深呼吸” 。纳入标准是一种算法的表示法,该算法尚未在硬件上实施,但已通过至少一项研究进行了验证,重点是阻塞性睡眠呼吸暂停分类的性能,其数据来自医院进行的PSG提取或可用于数据库。排除标准是本评价中没有分析的所有诊断要素。
在这里插入图片描述
根据源传感器,分析后的算法分为五类:脉搏血氧饱和度法;心电图 呼吸; 声音; 组合方法。进行了最终的一般分析,以确定最合适的算法。数据直接从论文中获取,分析的诊断要素为:准确度(Acc),灵敏度(Sen),特异性(Spe)和接收器工作特性曲线下的面积(AUC)。根据所应用的方法,使用了两组诊断要素:基于主题的(SB),对每个主题进行全局分类;基于纪元(EB),对所有主题的每个纪元进行单独分类。全局分类指定所分析算法对主题进行分类的准确性。

为每篇论文指出用于验证系统的人口,并添加了数据获取位置,无论是医院还是数据库。引用的数据库是:PhysioNet呼吸暂停-ECG [15];都柏林大学大学睡眠呼吸暂停[16] ; 睡眠心脏健康研究[17];MIT-BIH多导睡眠图数据库[18];扩大睡眠中的科学发现[19]。还显示了用于对数据进行分类的时间窗口。

三、基于ECG的

对ECG波形和源自ECG的听觉速率的分析通常用于检测与睡眠有关的呼吸障碍。Lin等。 [36]使用多分辨率小波变换将ECG信号分为四个频谱分量(alpha,beta,delta和theta),并将小波系数用作通过简单神经计算元素实现的四层NN的训练输入。

Khandoker等人 使用了离散小波变换(Symlet小波,阶数为3)。[37]将ECG信号分解为8个级别的详细系数。该信息被输入到第一事件检测阶段,该阶段使用具有一个包含30个神经元的隐藏层的前馈NN结构。当检测到可疑的呼吸暂停/呼吸不足时,将输出传递到第二个事件检测阶段,目的是将输出区分为这两种分类之一。最后一步使用前馈单层NN。

小波分解由Rachim等人应用。 [38],使用Debauches 4小波,以获得统计特征,并进行了PCA。然后使用具有高斯径向基函数核的支持向量机对数据进行分类。Hassan [39]应用可调谐Q因子小波变换将ECG信号段分解为子带,并使用对称正态逆高斯模型对其进行了进一步建模。然后将来自此模型的比例因子和特征因子输入到自适应增强(AdaBoost)分类器中。Hassan和Haque使用了相同类型的小波变换[40]。 对脑电信号进行分解,分析分解的方差,峰度和偏度,以作为随机下采样增强(RUSBoost)分类器的特征。

Smruthy和Šuttha [41]使用变分模式分解将ECG信号分解为多个变分模式函数,并将选择函数相加在一起以生成重构信号。从Teager能量算子(TEO)计算出的峰到峰距离和平均能量的标准偏差是从重构信号中确定的,以馈送给SVM分类器。哈桑[42]使用经验模式分解(EMD)通过将ECG信号分解为固有模式函数的有限总和来生成局部时频估计。然后确定均值,方差,偏度和峰度,并在具有S型激活函数的极限学习机上将其用于对数据进行分类的单个隐层前馈NN。

从ECG得出的心率可以分析心率变异性(HRV)和心跳间隔(RR),间隔可以定义为连续QRS点之间的间隔。Quiceno-Manrique等。 [43]采用了基于HRV的分析,通过频谱子带质心和线性滤波倒频谱系数,从属于Cohen类的时频分布中提取特征。使用kNN进行分类。Martínez-Vargas等人 使用了基于时间频率的随机特征。[44]用线性频率倒谱系数分析HRV。随机特征和滤波器组的数量的估计是通过在时频平面上进行频谱分割来确定的。测试了启发式和基于相关性的拆分,以确定最佳的光谱分区集。使用线性标签条件相关性作为相关性的有监督措施,并选择了七个频带作为kNN的特征,可以产生最高的准确性。

Kesper等人 提出了一种基于心率周期性变化分析的算法,用于检测睡眠呼吸障碍。[45]。该算法分析了代表心率下降的参考模式与心跳心律曲线的相关性。Ravelo-García等。 [46]使用非线性HRV分析,该分析使用了应用于RR系列的符号动力学方法,将其转换为符号序列。这些符号是通过考虑使用三个选定阈值的一组规则定义的。然后使用整合了临床和物理变量的LR模型进行分类。Zywietz等。 [47]使用LDA进行分类,其特征基于四个频段的信息:ULF;VLF;如果; 高频

Gutiérrez-Tobal等人 使用时域和频域熵。[48]。在时域中,使用样本熵将多尺度熵应用于HRV,而在频域中,将频谱熵应用于归一化PSD。此信息用作LR分类器的功能。HRV由Roche等人使用。 [49]使用小波变换分解信号,并使用分类树和分类树进行分类,分类树是使用分类和回归树(CART)方法开发的。确定32级分解参数是最有效的预测变量。

Ravelo-Garcia等人 测试了LDA和QDA这两个分类器。[50],并接受了从RR系列获得的倒谱特征。使用QDA可获得最佳结果。RR间隔和QRS面积由Mendez等人 从ECG信号的单根导线中得出。[51]。使用双变量时变自回归模型来分析信号的PSD。然后对kNN和NN进行测试,以确定最佳分类器。这些显示出相同的精度,但是NN提供了更高的灵敏度。RR间隔由Cheng等人采用。 [52]重建非线性状态空间。在将分类变量的时间序列从时域转移到二维分形域的迭代函数系统的基础上,使用多维索引方法将状态空间迭代地分割为局部递归区域和分形表示的分层结构。实现了表征分段子区域中异质递归状态的转换。然后,使用三个异质重复量词,即复发率,熵和均值作为特征,并使用PCA进行降维。OSA分类是通过正规LR进行的。

Chen和Zhang [53]的方法将各个长期RR间隔映射到具有概率密度的疾病状态空间,并通过Gamma分布中的参数移位来分析RR间隔信号的状态转换。这些偏移是通过基于Gamma分布的多状态累积和方案进行计算的。通过指数似然比检验向后消除来消除检测到的错误状态变化点。根据状态变化点生成严重性指数以表示疾病的严重性,并使用通用公式进行计算。该索引用作分类器的功能,并测试了三个分类器,分别是LDA,SVM和LR。最后一个分类器产生最佳结果。Yılmaz分析了三个分类器等。 [54]其中,RR系列是使用R峰检测技术从ECG信号的单根导线获得的,其中R波通过学习ECG信号的曲率和幅度来区分。研究的分类器是kNN,QDA和SVM。使用SVM可获得最佳精度。Almazaydeh等人 也使用了SVM 。[3]其中,RR间隔是使用R峰检测技术从ECG信号得出的。Chazal等人 提出了用于支持SVM的选定功能。[55]和Yılmaz等。 [54]然后使用线性核函数将训练数据映射到核空间中。此外,RR系列是Ravelo等人 提出的检测算法的基础。[56]。该算法通过将序列的VLF频带中的频谱功率除以总频谱功率来计算基于功率比率的系数。还使用了线性频率倒谱系数,并测试了两个分类器,即高斯混合模型(GMM)和SVM。使用SVM可获得最佳结果。Travieso等人 也使用了该分类器。[57]应用基于隐马尔可夫模型(HMM)的核,对从RR系列获得的倒频谱系数进行处理。

Nguyen等人 提出了一种分类器组合方法。[58]。使用了两个二进制分类器:SVM和10个神经元隐藏层NN。这些分类器使用HRV的功能和HRV的复发量化分析。使用执行输出分数的加权总和的软决策融合规则组合分类器的输出。Chen等。 [59]通过迭代累积平方和算法将RR间隔应用于信号分割,该算法搜索由于OSA引起的时间序列中的小变化。然后,使用快速傅立叶变换(FFT)生成用于计算LF / HF比的低频(LF)0.04-0.15 Hz和高频(HF)0.15-0.4 Hz信号。该比率用于产生评估受试者状况严重程度的严重程度指数,而SVM用于对数据进行分类。LSTM-RNN由Cheng等人使用。 [60]对RR间隔进行分类。该网络体系结构具有四个循环层,每个循环层都有一个归一化层和一个softmax分类器。前两个递归层在水平和垂直方向上进行扫描,而后两层则在左右方向上进行扫描。Pathinarupothi等人 使用具有恒定心跳数(心跳窗口)的瞬时心率形式的HRV 。[61]馈送2层堆叠的LSTM-RNN,每层有两个存储块。经验证,60个拍子的拍子窗口可提供最佳结果。

呼吸过程的结果是产生了T波和R波振幅的调制,从而可以生成ECG派生的呼吸(EDR)信号。根据Penzel等人 的分析,心率和ECG形态分析的结合可用于可靠地检测睡眠呼吸障碍。[62]使用心肺耦合。

Chazal等人 使用EDR和RR间隔信号。[55]获得用于LDA分类器的特征,该LDA分类器为每个样本特征向量生成判别值,该特征值被进一步映射以产生最终概率值。将该值与检测OSA的阈值进行比较。Mendez等人 也使用了RR间隔和EDR信号。[63],其中RR间隔系列的PSD由双变量自回归模型评估。将每个节拍的总频谱分为HRV的共同频谱指标,特别是低频,低频和高频频段,并确定每个频段在两个时间序列之间的频率相互关系。然后,kNN分类器将这些功能用于按分钟对呼吸暂停事件进行分类。Song等人 使用了相同的信号。[64]产生被认为与主题无关的功能,并基于判别式HMM实施学习和预测程序。每个ECG片段都有一个隐藏的马尔可夫状态,具有相应的观察值,该观察值是一个由从该片段中提取的特征组成的向量。因此,每个ECG记录都被建模为马尔可夫链。HMM的未知参数由最大似然估计确定。状态之间的转换概率是特定于主题的,特征的分布是独立于主题的。使用Baum-Welch算法执行OSA检测以估计马尔可夫状态。

Maier等人 提出了一种不同的方法。[65],使用基于互相关的索引,并结合多源信息,对心电图呼吸肌肌电图干扰(T波区域中的高通滤波心电图)中特定的低频调制,呼吸肌肌电图干扰和QRS振幅。证实包括心率并不能提高检测精度。Ravelo-García等人 使用了三种技术。[66]获得功能。首先,将RR系列编码为符号序列,并使用置换熵来区分不同的HRV模式。第二个是倒频谱分析,获得倒频谱系数。EDR的PSD是第三个,使用具有等距间隔的滤波器(范围从0到0.3 Hz)的滤波器组,以获取不同频带的特征。然后,两个经过测试的分类器LR和QDA使用了这些功能。两种分类器均达到了相似的性能,但QDA提供了最佳结果。倒谱系数,具有34个滤波器的滤波器组(用于分析非常低,低频和高频)和去趋势波动分析由Martín-González等人使用。 [67]提供三个经过测试的分类器:LDA;QDA;LR。这些功能是从HRV获得的。前两个变量提取与频率内容有关的信息,最后两个变量揭示与睡眠呼吸暂停相关的生理过程的非线性特征。使用QDA报告了最佳结果。

Khandoker等。 [68]使用14级的Daubechies小波分解RR和EDR信号。结果用作对OSA事件进行分类的SVM的输入。Khandoker等人 使用了从HRV和EDR信号的小波分解中提取的特征。[69]作为SVM分类器的输入。还分析了LDA分类器,提供了相似的结果。Yildiz等人 使用了HRV和EDR信号。[70]分析PSD的64个点(从HRV导出1到32,从EDR导出33到64)。测试了三个SVM内核,分别是线性,多项式和径向基函数(RBF)。RBF使用点2、3、45和46(由爬山算法选择)产生了最高的精度。

  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值