
前沿AI大模型论文翻译与解读
文章平均质量分 94
AI 科研
强化学习曾小健
"强化学习曾小健2、强化学习曾小健3、我是机器人曾小健具身"都是该号副号。CSDN全站80强博客、总近480w+浏览。AI生成式技术,计算机博士;llama3、Baichuan2、Qwen、GLM-4等等项目贡献人(ArtificialZeng)。这个博客的主题主要是强化学习技术、AI生成式技术、大模型多模态技术、机器人具身智能控制技术、机器/深度学习论文或科研前沿、GNN图神经网络、神经网络,包括人工神经网络和生物神经网络,及其大脑演化,智能和认知的产生,通用人工智能;
展开
-
ICLR 2024丨脑与智能论文汇总
当前基于脑电图(EEG)的深度学习模型通常是针对脑机交互(BCI)中的特定数据集和应用而设计的,限制了模型的规模,从而削弱了它们的感知能力和泛化性。最近,大型语言模型(LLM)在文本处理方面取得了前所未有的成功,促使我们探索大型脑电图模型(LEM)的能力。我们希望LEM能够突破不同任务类型脑电数据集的限制,通过无监督的预训练获得脑电信号的通用感知能力。然后可以针对不同的下游任务对模型进行微调。然而,与文本数据相比,脑电图数据集的体量普遍较小,且格式差异很大。原创 2024-05-27 17:04:32 · 962 阅读 · 0 评论 -
预测式AI即将来到,你准备好了么?
当 life2vec 尝试预测你的未来时,如你的健康状况或可能的工作类型时,它会参考这个快照中的数据。它不仅关注一些显而易见的信息,如你的年龄、自我保健情况或收入,也能察觉到一些不太明显的细节,如你的工作类型及其对未来可能的影响。预测式 AI 的未来也会如此吗?同样,预测式 AI 的预测可能受到历史数据固有偏见的影响,导致不准确或误导性的未来预测,这可能会导致基于错误建议的糟糕规划或潜在的灾难性结果。这些预测可能引发新的问题,并引导你探索以前未曾考虑过的领域,帮助你理解这些 AI 对你未来预测背后的原因。原创 2024-04-22 13:57:23 · 838 阅读 · 0 评论 -
图灵奖揭晓,史上首位数学和计算机界最高荣誉得主出现!
理论计算机科学是数学和计算机科学之间的桥梁,这两个领域都从这种联系中受益。该领域包括两个子领域:算法理论,涉及计算程序的设计和分析;复杂性理论,涉及努力证明在某些情况下不存在有效的算法,并研究计算任务的分类系统。时间、内存、随机性和并行性是计算工作量的典型衡量标准。它提出了诸如“这个问题可以通过计算解决吗?”之类的问题。或者“如果这个问题可以通过计算解决,需要多少时间和其他资源?原创 2024-04-13 12:26:56 · 1021 阅读 · 0 评论 -
日本开发出进化模型:模仿生物进化论,jim fan:我最近读到的最具想象力的 LLM 论文
—在数据流空间(网络层)和参数空间(权重)中进行。前者是用进化算法发现将不同模型的网络层组合在一起的最佳配方;后者则是找到混合多个模型权重的最佳策略。这两种方法还可以相互结合,通过架构创新来进化全新的基础模型与此同时,经过进化的日语视觉-语言模型对于处理富含日本文化特色的内容表现出色,当用日本来源的图像描述对数据集进行测试时,同样获得了卓越的顶级成绩此外,通过进化算法合并不同的扩散模型,研究团队还诞生了一个4步扩散过程的快速日语图像生成模型EvoSDXL-JP。原创 2024-04-07 14:47:49 · 458 阅读 · 0 评论 -
[GCT论文详解]Graph Convolutional Transformer学习电子健康记录EHR的图结构+github页面 合集
电子健康记录 (EHR) 的有效建模正迅速成为学术界和工业界的一个重要话题。最近的一项研究表明,使用电子病历数据的图形结构(例如诊断和治疗之间的关系)可提高预测任务(如心力衰竭预测)的性能。然而,EHR 数据并不总是包含完整的结构信息。而且,当涉及到索赔数据时,结构信息一开始就完全不可用。在这种情况下,我们是否还能做得比仅仅将 EHR 数据视为扁平结构的特征包更好?在本文中,我们研究了在对 EHR 数据执行监督预测任务时联合学习 EHR 隐藏结构的可能性。原创 2024-02-26 23:23:38 · 1207 阅读 · 1 评论 -
EHR图增强:GCT与对‘患者群体图’进行无监督预训练以进行患者级别的预测
请仔细阅读这篇论文,继续总结这篇论文Unsupervised Pre-Training on Patient Population Graphs for Patient-Level Predictions, 特别是在图构造,图训练方面请详细点500个患者的子图总之,本文首次将无监督预训练应用于患者群体图,并设计了相应的图构建方法、网络结构和预训练策略,为EHR数据的患者级别预测提供了新思路,特别在标注数据稀缺时能发挥较大作用。预训练学习到的群体级别的数据表征,可以更好地迁移到下游任务。原创 2024-03-29 16:48:51 · 740 阅读 · 0 评论 -
SimGRACE:无需数据增强的图对比学习的简单框架
图对比学习(GCL)已成为图表示学习的主导技术,它最大化了共享相同语义的成对图增强之间的互信息。不幸的是,鉴于图数据的多样性,在增强过程中很难很好地保留语义。目前,GCL 中的数据增强大致分为三种令人不满意的方式。首先,可以通过反复试验来手动选择每个数据集的增强。其次,可以通过繁琐的搜索来选择增强。第三,可以通过昂贵的领域知识作为指导来获得增强。所有这些都限制了现有 GCL 方法的效率和更普遍的适用性。原创 2024-03-27 19:15:44 · 1471 阅读 · 0 评论 -
[医疗AI论文解读]Unifying Heterogeneous EHR Systems via Text-Based Code 通过基于文本的代码嵌入统一异构电子健康记录系统
电子健康记录 (EHR) 使用的增加促进了预测性医疗保健的进步。然而,EHR 系统缺乏表示医学概念的统一代码系统。电子病历的异构格式给大规模训练和部署最先进的深度学习模型带来了障碍。为了克服这个问题,我们引入了基于描述的嵌入(DescEmb),这是一种与代码无关的基于描述的表示学习框架,用于 EHR 的预测建模。DescEmb 利用神经语言模型的灵活性,同时保持中立的方法,可以与特定任务表示学习或预测建模的先前框架相结合。我们在各种实验中测试模型的能力,包括预测任务、迁移学习和池化学习。原创 2024-03-27 14:13:21 · 1224 阅读 · 0 评论 -
ICLR24和AAAI24图神经网络高分论文汇总
然而,通过实验研究,我们发现高阶邻居的标签实际上表现出单性,这可以在不需要一阶邻居之间的相似性的情况下,基于高阶邻居之间的标签诱导出相似性。OFA提出了文本属性图,通过自然语言描述节点和边缘来统一不同的图数据,并使用语言模型将不同的、可能跨域的文本属性编码为同一嵌入空间中的特征向量。在未来的工作中,作者的目标是将提出的框架扩展到节点分类任务,并探索其在动态图中的适用性。最重要的是,所提出的方法具有即插即用的特点,并且我们通过经验证明所提出的方法对多个最先进的GCL模型是通用的。我们提出了一种新的可扩展。原创 2024-03-27 13:45:03 · 1459 阅读 · 0 评论 -
大模型应用的10种架构模式
将来,随着专业AI公司提供的特定服务的增多,我们可以将一个模块替换为外部或第三方服务,以处理特定的任务或领域的问题。对于刚入门的用户,可以选择使用预先构建的服务,如 GPTCache,或者使用常见的缓存数据库,如 Redis、Cassandra、Memcached来运行自己的服务。在需要大量创新解决方案的场景中,或者在处理复杂的数据集时,这种模式尤其有效。这样的设置非常适合复杂的问题解决场景,在这种场景中,问题的不同方面需要不同的专业知识,就像一个由专家组成的小组,每个专家负责处理更大问题的一个方面。原创 2024-03-27 11:41:58 · 1585 阅读 · 0 评论 -
图神经网络新突破!连续两篇工作登Nature!分别是用图神经网络做蛋白质预测和材料设计。
链接:https://pytorch-geometric.readthedocs.io/en/latest/modules/explain.html#id4。原创 2024-03-27 11:35:30 · 1614 阅读 · 0 评论 -
图神经网络自监督学习 之 SimGRACE
核心要点方法细节SimGRACE方法架构SimGRACE理论分析AT-SimGRACE的鲁棒性证明代码实现敬阅读的同学心得体会扰动的意义文章引用文章旨在解决现有在图对比学习中需要依赖大量试验和人工经验针对数据集构造增广视图,并且可能在增广不当时导致语义变化的问题,基于扰动后的encoder可以保持图数据语义的分析和发现,提出无需的对比学习框架SimGRACE,该方法利用不同的图编码器作为对比视图的生成器,比较两个不同编码器扰动后得到的视图之间的语义相似度,通过。原创 2024-03-27 11:16:50 · 775 阅读 · 0 评论 -
GNN-Transformer新突破!全局与局部的完美融合
原创 学姐这类结合不仅能够让两者发挥各自的优势,还能推动模型的创新,提高处理图数据的效率和性能。具体点讲,通过利用Transformer,我们可以扩展GNN的感受野,包括那些距离中心节点较远的相关节点。相对的,GNN也可以帮助Transformer捕捉复杂的图拓扑信息,并从相邻区域高效地聚合相关节点。目前,,这其中有不少个人认为很值得学习的成果。比如GNN 嵌套 Transformer 模型、仅使用一层全局注意力的简化图Transformer模型SGFormer。本文挑选了。原创 2024-03-27 10:36:45 · 1618 阅读 · 0 评论 -
Transformer 作为图神经网络
Transformer 作为图神经网络:叶子豪、周金晶、郭启鹏、甘泉、张政警告本教程旨在通过代码作为解释手段,深入了解本文。因此,该实现并未针对运行效率进行优化。推荐实现请参考。在本教程中,您将了解 Transformer 模型的简化实现。您可以看到最重要的设计点的亮点。例如,只有单头注意力。找到。中的结构类似。Transformer 模型作为序列建模的 CNN/RNN 架构的替代品,在研究论文《中被介绍。它提高了机器翻译和自然语言推理任务()的技术水平。最近使用大规模语料库(原创 2024-03-27 09:54:04 · 1262 阅读 · 0 评论 -
写代码神器!48个主流代码生成LLM大模型盘点,包含专用、微调等4大类Code llama
LaMDA是一种专门用于对话的神经网络语言模型,通过预训练和微调,可以显著提高其安全性和事实依据。在安全性方面,使用少量众包工人注释的数据进行微调的分类器过滤候选响应可以提高模型的安全性。在事实依据方面,允许模型咨询外部知识源可以使生成的响应基于已知来源。原创 2024-03-26 23:11:35 · 3304 阅读 · 0 评论 -
看知识图谱的种类细分、构建、推理方法及与大模型的异同:On the Evolution of Knowledge Graphs
本文主要介绍了《On the Evolution of Knowledge Graphs: A Survey and Perspective》这一文章,该文章对知识图谱的分类有一定的启发意义,感兴趣的可以再看原文,会有更多收获。总之,KGs和LLMs的整合将为人工智能领域带来创新。通过互补,两个实体都有可能实现更优越的性能和更广泛的应用场景。原创 2024-03-26 14:20:18 · 1637 阅读 · 0 评论 -
CPLLM代码逐行解析
这段代码主要是在MIMIC-IV数据集上微调一个预训练的语言模型,用于慢性肾病的分类任务。训练过程中会评估模型在验证集上的性能,并在训练结束后在测试集上进行最终评估。通过这段代码,可以看到如何使用现有的预训练语言模型,结合LoRA和量化技术,在医疗领域的特定任务上进行高效的微调。这种方法可以在较小的数据集上取得良好的性能,同时减少计算资源的需求。预训练的语言模型(如LLaMA或BioMedLM),并在MIMIC-IV数据集上进行微调,用于慢性肾病的二元分类任务。模型的token embeddings。原创 2024-03-25 22:59:03 · 904 阅读 · 0 评论 -
LANCET子刊:MIMIC+eICU+AUMC+机器学习聚类+XGBoost多分类=CCI患者分类模型
慢性危重症(CCI)是重症监护病房(ICU)的一种“流行病”,是现代医学发展的必然结果。在过去的30年里,CCI在世界范围内的患病率不断上升,尤其是在高收入国家,这引起了学术界的关注。在美国,从2004年到2009年,以全国人口为基础的CCI总患病率为每10万人中34.4人,增长率为25.76%。在日本,一项全国性住院患者调查显示,CCI特定年龄人群的总体患病率为每10万人中42.0人,住院死亡率为28.6%。原创 2024-03-25 18:04:12 · 1522 阅读 · 1 评论 -
神经符号学习: 神经网络+逻辑推理
神经符号学习,目标是结合深度神经网络(DNNs)的感知能力和符号推理系统的推理能力。旨在结合神经感知与符号逻辑,但目前的研究仅将它们串联并分别优化,未能充分利用它们之间的相互增强信息。本文提出了一种名为DeepLogic的深度学习框架,用于解决具有逻辑推理和神经感知双重任务的问题。本文贡献如下:提出具有理论收敛保证的DeepLogic框架,该框架进行神经感知和逻辑推理的联合学习,使它们可以相互增强,以提高神经符号推理的性能和可解释性。提出源自一阶逻辑的深度逻辑模块(DLM)原创 2024-03-25 14:47:38 · 1744 阅读 · 0 评论 -
[论文解读]Ram-EHR:检索增强符合电子健康记录的临床预测Ram-EHR: Retrieval Augmentation Meets Clinical Predictionson Electro
我们推出了 Ram-EHR,这是一种检索增强管道,用于改进电子健康记录 (EHR) 的临床预测。Ram-EHR首先收集多个知识源,将其转换为文本格式,并使用密集检索来获取与医学概念相关的信息。该策略解决了与概念的复杂名称相关的困难。然后,Ram-EHR 增强了与一致性正则化联合训练的本地 EHR 预测模型,以从患者就诊和总结的知识中捕获补充信息。对两个 EHR 数据集的实验表明 Ram-EHR 相对于之前的知识增强基线(AUROC 提高 3.4。原创 2024-03-24 23:19:12 · 1748 阅读 · 0 评论 -
[论文解读]GraphCare:通过个性化知识图增强医疗保健预测GraphCare: Enhancing Healthcare Predictions with Personalized Knowle
临床预测模型通常依赖于患者的电子健康记录 (EHR),但整合医学知识来增强预测和决策具有挑战性。 这是因为个性化预测需要个性化知识图 (KG),而很难从患者 EHR 数据生成这些知识图。 为了解决这个问题,我们提出了GraphCare,一个使用外部 KG 来改进基于 EHR 的预测的框架。 我们的方法从大语言模型(LLM)和外部生物医学知识图谱中提取知识来构建特定于患者的知识图谱,然后将其用于训练我们提出的双注意力增强(BAT)图神经网络(GNN)以进行医疗保健预测。 在 MIMIC-III 和 MIMIC原创 2024-03-19 17:11:04 · 1197 阅读 · 1 评论 -
[论文解读]CPLLM:使用大型语言模型进行临床预测CPLLM: Clinical Prediction with Large Language Models 数据集eICU、MIMIC 3等EHR数
我们提出了使用大语言模型进行临床预测(CPLLM),这是一种对预先训练的大语言模型(大语言模型)进行微调以进行临床疾病预测的方法。我们利用量化并根据提示对大语言模型进行微调,其任务是利用患者的历史诊断记录来预测患者在下次就诊或随后的诊断中是否会被诊断出目标疾病。我们将我们的结果与各种基线进行了比较,包括Logistic 回归、RETAIN 和 Med-BERT,这是使用结构化 EHR 数据进行疾病预测的当前最先进的模型。原创 2024-03-17 23:39:47 · 1794 阅读 · 0 评论