1307:【例1.3】高精度乘法
时间限制: 1000 ms 内存限制: 65536 KB
提交数: 8871 通过数: 3049
【题目描述】
输入两个高精度正整数M和N(M和N均小于100位)。求这两个高精度数的积。
【输入】
输入两个高精度正整数M和N。
【输出】
求这两个高精度数的积。
【输入样例】
36
3
【输出样例】
108
【来源】
No
#include<bits/stdc++.h>
using namespace std;
int a[333]={0},b[333]={0},c[333]={0};
int main(){
string str1,str2;
cin>>str1;
cin>>str2;
int len1=str1.length();
int len2=str2.length();
for(int i=0;i<len1;++i)
a[len1-i]=str1[i]-'0';
for(int i=0;i<len2;++i)
b[len2-i]=str2[i]-'0';
//乘法的核心代码
for(int i=1;i<=len2;++i){//b
int temp=0;
for(int j=1;j<=len1;++j){//a
c[i+j-1]+=b[i]*a[j]+temp;
temp=(c[i+j-1])/10;//最后一个的进位放那个
c[i+j-1]=c[i+j-1]%10;
}
c[i+len1]=temp; //每一行的最后一个进位
}
int lenc=len1+len2;//len1*len2 最多产生这些位
while((c[lenc]==0)&&(lenc>1))//去前导零
lenc--;
for(int i=lenc;i>0;i--)
cout<<c[i];
cout<<endl;
return 0;
}
这一题还是有未知的恐惧,这道题的有几个小规律,例如:两位*两位最多得四位数。
这道题 比大数加法和大数减法难点,这一次仍然没有一把A掉。
错误代码:
#include<bits/stdc++.h>
using namespace std;
int a[111],b[111],c[222];
int main(){
string str1,str2;
cin>>str1;
cin>>str2;
int lena=str1.length();
int lenb=str2.length();
for(int i=0;i<lena;++i)
a[lena-i]=str1[i]-'0';
for(int i=0;i<lenb;i++)
b[lenb-i]=str2[i]-'0';
//倒序相乘
for(int i=1;i<=lenb;++i){
int temp=0;
for(int j=1;j<=lena;++j){
//这里和大数相加,大数相减还是有区别的。
c[i+j-1]+=(b[i]*a[j]+temp)%10;
temp=(b[i]*a[j]+temp)/10;
}
c[lena+i]=temp;
}
//去掉前导零
int len=lena+lenb;
int index;
for(int i=len;i>0;i--){
if(c[i]){
index=i;
break;
}
}
for(int i=index;i>0;i--)
cout<<c[i];
cout<<endl;
return 0;
}
正确的代码:
#include<bits/stdc++.h>
using namespace std;
int a[111],b[111],c[222];
int main(){
string str1,str2;
cin>>str1;
cin>>str2;
int lena=str1.length();
int lenb=str2.length();
for(int i=0;i<lena;++i)
a[lena-i]=str1[i]-'0';
for(int i=0;i<lenb;i++)
b[lenb-i]=str2[i]-'0';
//倒序相乘
for(int i=1;i<=lenb;++i){
int temp=0;
for(int j=1;j<=lena;++j){
c[i+j-1]+=b[i]*a[j]+temp;
temp=(c[i+j-1])/10;
c[i+j-1]=c[i+j-1]%10;
}
c[lena+i]=temp;//有没有进位都放进来,去前导零,我是在最前面去的
}
//去掉前导零
int len=lena+lenb;
int index;
for(int i=len;i>0;i--){
if(c[i]){
index=i;
break;
}
}
for(int i=index;i>0;i--)
cout<<c[i];
cout<<endl;
return 0;
}
希望我下一次写这道题,能一发A掉。一发入魂。