我们只需考虑有向图上的算法,因为无向图是特殊的有向图。我们可以将所有无向边 u↔v,都拆分成两条有向边:u←v 和 u→v。
为了方便叙述,我们做如下约定:n 表示图中点数,m 表示图中边数。
图的存储
图一般有两种存储方式:
邻接矩阵。开个二维数组,g[i][j] 表示点 i 和点 j 之间的边权。
邻接表。邻接表有两种常用写法,我推荐第二种,代码更简洁,效率也更高,后面有代码模板:
(1) 二维vector:vector<vector<int>> edge,edge[i][j] 表示第 i 个点的第 j条邻边。
(2) 数组模拟邻接表:为每个点开个单链表,分别存储该点的所有邻边。
最短路算法
最短路算法分为两大类:
单源最短路,常用算法有:
(1) dijkstra,只有所有边的权值为正时才可以使用。在稠密图上的时间复杂度是 O(),稀疏图上的时间复杂度是 O(mlogn)。
(2) spfa,不论边权是正的还是负的,都可以做。算法平均时间复杂度是 O(km),k 是常数。 强烈推荐该算法。
多源最短路,一般用floyd算法。代码很短,三重循环,时间复杂度是 O()。
算法模板
我们以 poj2387 Til the Cows Come Home 题目为例,给出上述所有算法的模板。
题目大意
给一张无向图,nn个点 m 条边,求从1号点到 n 号点的最短路径。
输入中可能包含重边。
dijkstra算法 O()
最裸的dijkstra算法,不用堆优化。每次暴力循环找距离最近的点。
只能处理边权为正数的问题。
图用邻接矩阵存储。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010, M = 2000010, INF = 1000000000;
int n, m;
int g[N][N], dist[N]; // g[][]存储图的邻接矩阵, dist[]表示每个点到起点的距离
bool st[N]; // 存储每个点的最短距离是否已确定
void dijkstra()
{
for (int i = 1; i <= n; i++) dist[i] = INF;
dist[1] = 0;
for (int i = 0; i < n; i++)
{
int id, mind = INF;
for (int j = 1; j <= n; j++)
if (!st[j] && dist[j] < mind)
{
mind = dist[j];
id = j;
}
st[id] = 1;
for (int j = 1; j <= n; j++) dist[j] = min(dist[j], dist[id] + g[id][j]);
}
}
int main()
{
cin >> m >> n;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
g[i][j] = INF;
for (int i = 0; i < m; i++)
{
int a, b, c;
cin >> a >> b >> c;
g[a][b] = g[b][a] = min(g[a][b], c);
}
dijkstra();
cout << dist[n] << endl;
return 0;
}
dijkstra+heap优化 O(mlogn)
用堆维护所有点到起点的距离。时间复杂度是 O(mlogn)。
这里我们可以手写堆,可以支持对堆中元素的修改操作,堆中元素个数不会超过 n。也可以直接使用STL中的priority_queue,但不能支持对堆中元素的修改,不过我们可以将所有修改过的点直接插入堆中,堆中会有重复元素,但堆中元素总数不会大于 m。
只能处理边权为正数的问题。
图用邻接表存储。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
#include <vector>
#include <functional>
using namespace std;
const int N = 1010, M = 2000010, INF = 1000000000;
int n, m;
int dist[N]; // 存储每个点到起点的距离
int h[N], e[M], v[M], ne[M], idx; // 数组模拟邻接表
void add(int a, int b, int c)
{
e[idx] = b, v[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
void dijkstra_heap()
{
priority_queue < pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> heap;
for (int i = 1; i <= n; i++) dist[i] = INF;
dist[1] = 0;
heap.push(make_pair(dist[1], 1));
while (heap.size())
{
pair<int, int> t = heap.top();
heap.pop();
if (t.first > dist[t.second]) continue;
for (int i = h[t.second]; i != -1; i = ne[i])
if (dist[e[i]] > t.first + v[i])
{
dist[e[i]] = t.first + v[i];
heap.push(make_pair(dist[e[i]], e[i]));
}
}
}
int main()
{
memset(h, -1, sizeof h);
cin >> m >> n;
for (int i = 0; i < m; i++)
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
add(b, a, c);
}
dijkstra_heap();
cout << dist[n] << endl;
return 0;
}
spfa算法 O(km)
bellman-ford算法的优化版本,可以处理存在负边权的最短路问题。
最坏情况下的时间复杂度是 O(nm),但实践证明spfa算法的运行效率非常高,期望运行时间是 O(km),其中 k 是常数。
但需要注意的是,在网格图中,spfa算法的效率比较低,如果边权为正,则尽量使用 dijkstra 算法。
图采用邻接表存储。
队列为手写的循环队列。
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 1010, M = 2000010, INF = 1000000000;
int n, m;
int dist[N], q[N]; // dist表示每个点到起点的距离, q 是队列
int h[N], e[M], v[M], ne[M], idx; // 邻接表
bool st[N]; // 存储每个点是否在队列中
void add(int a, int b, int c)
{
e[idx] = b, v[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
void spfa()
{
int hh = 0, tt = 0;
for (int i = 1; i <= n; i++) dist[i] = INF;
dist[1] = 0;
q[tt++] = 1, st[1] = 1;
while (hh != tt)
{
int t = q[hh++];
st[t] = 0;
if (hh == n) hh = 0;
for (int i = h[t]; i != -1; i = ne[i])
if (dist[e[i]] > dist[t] + v[i])
{
dist[e[i]] = dist[t] + v[i];
if (!st[e[i]])
{
st[e[i]] = 1;
q[tt++] = e[i];
if (tt == n) tt = 0;
}
}
}
}
int main()
{
memset(h, -1, sizeof h);
cin >> m >> n;
for (int i = 0; i < m; i++)
{
int a, b, c;
cin >> a >> b >> c;
add(a, b, c);
add(b, a, c);
}
spfa();
cout << dist[n] << endl;
return 0;
}
floyd算法 O()
标准弗洛伊德算法,三重循环。循环结束之后 d[i][j] 存储的就是点 i 到点 j 的最短距离。
需要注意循环顺序不能变:第一层枚举中间点,第二层和第三层枚举起点和终点。
由于这道题目的数据范围较大,点数最多有1000个,因此floyd算法会超时。
但我们的目的是给出算法模板哦~
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
const int N = 1010, M = 2000010, INF = 1000000000;
int n, m;
int d[N][N]; // 存储两点之间的最短距离
int main()
{
cin >> m >> n;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
d[i][j] = i == j ? 0 : INF;
for (int i = 0; i < m; i++)
{
int a, b, c;
cin >> a >> b >> c;
d[a][b] = d[b][a] = min(c, d[a][b]);
}
// floyd 算法核心
for (int k = 1; k <= n; k++)
for (int i = 1; i <= n; i++)
for (int j = 1; j <= n; j++)
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
cout << d[1][n] << endl;
return 0;
}