题意:
就是发传单,每个社团有三个参数A B C。社团的传单会发给第A个人 ,第A+1*C个人,第A+2*C...A+K*C (A+K*C<=B)
某个人收到的传单是奇数的话,就称之为不幸之人。至多只有一个人会是不幸之人。
思路:
首先要判是否有解。这个可以统计所有传单数量,如果是奇数那么就有解,反之。
如果有解,因为只有一个人会是奇数,我们可以二分找到这个人,设为其编号为x。假设当前二分编号的位置是p,如果p之前(包含第p个人)所有人收到的传单数量和是偶数,说明x在p后面(奇数+偶数=奇数)。反之,x在p前面。二分停下之后就夹逼出了答案。知道是谁后,求某个人收到的传单数量就很简单了。
code:
#include <algorithm>
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <string>
#include <math.h>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <set>
#include <map>
using namespace std;
/*-------------------------Template----*/
#define N 20020
#define E 200000
#define ll long long
#define CUBE(x) ((x)*(x)*(x))
#define SQ(x) ((x)*(x))
#define ALL(x) x.begin(),x.end()
#define CLR(x,a) memset(x,a,sizeof(x))
#define maxAry(a,n) max_element(a,a+(n))
#define minAry(a,n) min_element(a,a+(n))
typedef pair<int,int> PI;
const int INF=0x3fffffff;
const int PRIME =999983;
const int MOD =10007;
const int MULTI =1000000007;
const double EPS=1e-9;
/*----------------------end Template----*/
int n;
ll l,r;
ll a[N],b[N],c[N],k[N];
ll get(ll A,ll B,ll C)
{
ll R=(B-A)/C;
l=min(l,A);
r=max(r,A+R*C);
return R+1;
}
int getAns(ll x)
{
int ans=0;
for(int i=0;i<n;i++){
ll y=x-a[i];
if(y>=0 && y<=b[i]-a[i] && y%c[i]==0){
ans++;
}
}
return ans;
}
bool check(ll x)
{
ll sum=0,p;
for(int i=0;i<n;i++){
p=x-a[i];
if(p>=0){
p/=c[i];
sum+=min(p+1,k[i]);
}
}
return sum%2==0;
}
int main()
{
ll sum=0;
while(~scanf("%d",&n)){
l=1ll<<32;
r=-1;
sum=0;
for(int i=0;i<n;i++){
scanf("%I64d%I64d%I64d",a+i,b+i,c+i);
sum+=(k[i]=get(a[i],b[i],c[i]));
}
if(sum%2){
while(l<r){
ll mid=(l+r)>>1;
if(check(mid)) l=mid+1;
else r=mid;
}
printf("%I64d %d\n",r,getAns(r));
}else{
puts("DC Qiang is unhappy.");
}
}
return 0;
}