HDU 4768 Flyer

题意:

就是发传单,每个社团有三个参数A B C。社团的传单会发给第A个人 ,第A+1*C个人,第A+2*C...A+K*C (A+K*C<=B

某个人收到的传单是奇数的话,就称之为不幸之人。至多只有一个人会是不幸之人。


思路:
首先要判是否有解。这个可以统计所有传单数量,如果是奇数那么就有解,反之。

如果有解,因为只有一个人会是奇数,我们可以二分找到这个人,设为其编号为x。假设当前二分编号的位置是p,如果p之前(包含第p个人)所有人收到的传单数量和是偶数,说明x在p后面(奇数+偶数=奇数)。反之,x在p前面。二分停下之后就夹逼出了答案。知道是谁后,求某个人收到的传单数量就很简单了。


code:

#include <algorithm>
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <string>
#include <math.h>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <set>
#include <map>
using namespace std;
 
/*-------------------------Template----*/
#define N  20020
#define E  200000
#define ll long long
#define CUBE(x) ((x)*(x)*(x))
#define SQ(x)     ((x)*(x))
#define ALL(x)     x.begin(),x.end()
#define CLR(x,a) memset(x,a,sizeof(x))
#define maxAry(a,n) max_element(a,a+(n))
#define minAry(a,n) min_element(a,a+(n))
typedef pair<int,int> PI;
const int INF=0x3fffffff;
const int PRIME =999983;
const int MOD   =10007;
const int MULTI =1000000007;
const double EPS=1e-9;
/*----------------------end Template----*/

int n;
ll l,r;
ll a[N],b[N],c[N],k[N];

ll get(ll A,ll B,ll C)
{
    ll R=(B-A)/C;
    l=min(l,A);
    r=max(r,A+R*C);
    return R+1;
}

int getAns(ll x)
{
    int ans=0;
    for(int i=0;i<n;i++){
        ll y=x-a[i];
        if(y>=0 && y<=b[i]-a[i] && y%c[i]==0){
            ans++;
        }
    }
    return ans;
}

bool check(ll x)
{
    ll sum=0,p;
    for(int i=0;i<n;i++){
        p=x-a[i];
        if(p>=0){
            p/=c[i];
            sum+=min(p+1,k[i]);
        }
    }
    return sum%2==0;
}

int main()
{
    ll sum=0;
    while(~scanf("%d",&n)){
        l=1ll<<32;
        r=-1;
        sum=0;
        for(int i=0;i<n;i++){
            scanf("%I64d%I64d%I64d",a+i,b+i,c+i);
            sum+=(k[i]=get(a[i],b[i],c[i]));
        }
        if(sum%2){
            while(l<r){
                ll mid=(l+r)>>1;
                if(check(mid)) l=mid+1;
                else r=mid;
            }
            printf("%I64d %d\n",r,getAns(r));
        }else{
            puts("DC Qiang is unhappy.");
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值