Codeforces Round #234 (Div. 2)

C、D


C:


把所有0的边所连的两个点加入同一个集合,如果对于某类型所有点都在同一个集合就是correct。

然后就是500^3的floyd


code:

#include <algorithm>
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <sstream>
#include <stdio.h>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <set>
#include <map>
using namespace std;

#define N  100010
#define ALL(x)     x.begin(),x.end()
#define CLR(x,a)   memset(x,a,sizeof(x))
typedef long long    ll;
typedef pair<int,int> PI;
const int INF  = 0x3fffffff;
const int MOD  = 1000000007;
/*-----------code------------*/
class DisjointSet{ //简版
public:
	int parent[N];
	void init(int n)
	{
		for(int i=0;i<=n;i++)
			parent[i]=i;
	}
	int find(int x)
	{
		return x==parent[x]? x: (parent[x]=find(parent[x]));
	}
	void merge(int x,int y)
	{
		int rtx=find(x);
		int rty=find(y);
		if(rtx==rty) return ;
		parent[rtx]=rty;
	}
}ds;

int dp[512][512];
int pos[N],a[N];

int main(){
	int n,m,k,c,p=1;
	scanf("%d%d%d",&n,&m,&k);
	for(int i=1;i<=k;i++){
		scanf("%d",&a[i]);
		for(int j=0;j<a[i];j++) pos[p++]=i;
	}
	CLR(dp,0x3f);
	for(int i=1;i<=k;i++) dp[i][i]=0;
	ds.init(n);
	while(m--){
		int x,y,c;
		scanf("%d%d%d",&x,&y,&c);
		if(c==0) ds.merge(x,y);
		if(dp[pos[x]][pos[y]]>c){
			dp[pos[x]][pos[y]]=c;
			dp[pos[y]][pos[x]]=c;
		}
	}
	p=1;
	for(int i=1;i<=k;i++){
		for(int j=0;j<a[i];j++){
			if(ds.find(p)!=ds.find(p+j)){
				puts("No");
				return 0;
			}
		}
		p+=a[i];
	}
	puts("Yes");
	for(int t=1;t<=k;t++){
		for(int i=1;i<=k;i++)
			for(int j=1;j<=k;j++)
				dp[i][j]=min(dp[i][j],dp[i][t]+dp[t][j]);
	}
	for(int i=1;i<=k;i++){
		for(int j=1;j<=k;j++) printf("%d ",(dp[i][j]>=dp[0][0])?-1:dp[i][j]);
		puts("");
	}
	return 0;
}



D:

二进制每一位拆开分析,这样就是01的数组,对于连续x个1,合并一次后就变为x-1个。总共有多少个1,就有多少个2^i(i是第几位)。

然后每次更新的话,用L[i]记录以i为结尾,从左边起最多的连续1,R[i]表示以i为开头至右最多连续1。

如果是0更新成1,那么和的变化是 cal(L[pos-1]+R[pos+1]+1)-(cal(L[pos-1])+cal(R[pos+1])),cal函数是计算连续1长度为x,一共能变成多少个1。然后还需要更新区间[ pos-L[pos-1] , pos+R[pos+1] ]内的R[i]和L[i]的值,用树状数组维护区间更新。


code:

#include <algorithm>
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <sstream>
#include <stdio.h>
#include <string>
#include <vector>
#include <queue>
#include <stack>
#include <cmath>
#include <list>
#include <set>
#include <map>
using namespace std;

#define N  100010
#define ALL(x)     x.begin(),x.end()
#define CLR(x,a)   memset(x,a,sizeof(x))
typedef long long    ll;
typedef pair<int,int> PI;
const int INF  = 0x3fffffff;
const int MOD  = 1000000007;
/*-----------code------------*/

class BIT{
public:
	typedef int type;
	type sum[N];
	int n;
	void init(int n){
		this->n=n;
		fill(sum,sum+n+1,0);
	}
	void add(int i,type x){
		for(;i>=1;i-= -i&i) sum[i]+=x;
	}
	void update(int l,int r,int x){
		add(l-1,-x);
		add(r,x);
	}
	void set(int i,int x){
		update(i,i,x);
	}
	type get(int i){
		type ans=0;
		if(i) for(;i<=n;i+= -i&i) ans+=sum[i];
		return ans;
	}
	type operator[](const int i){
		return get(i);
	}
}l[20],r[20];


int cnt[20][N];
ll sum;

ll cal(ll x,int i){
	return (x+1)*x/2*(1<<i);
}

ll solve(int i,int c,int id){
	if(cnt[id][i]==c) return 0;
	cnt[id][i]=c;
	ll ans=0;
	BIT &L=l[id], &R=r[id];
	if(c){
		ans-=cal(L[i-1],id)+cal(R[i+1],id);
		ans+=cal(L[i-1]+R[i+1]+1,id);
		L.update(i,i+R[i+1],1+L[i-1]);
		R.update(i-L[i-1],i,1+R[i+1]);
	}else{
		ans-=cal(L[i-1]+R[i+1]+1,id);
		ans+=cal(L[i-1],id)+cal(R[i+1],id);
		L.update(i,i+R[i+1],-L[i]);
		R.update(i-L[i-1],i,-R[i]);
	}
	return ans;
}

int main(){
	int n,m,a;
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++){
		scanf("%d",&a);
		for(int j=0;j<20;j++) if(1<<j&a){
			cnt[j][i]=1;
		}
	}
	for(int i=0;i<20;i++){
		l[i].init(n);
		r[i].init(n);
		ll x=0;
		for(int j=1;j<=n;j++){
			if(cnt[i][j]==1) x++, l[i].set(j,x);
			else{
				sum+=cal(x,i);
				//printf("add len:%d 2^%d\n",x,i);
				x=0;
			}
		}
		sum+=cal(x,i);
		//printf("add len:%d 2^%d\n",x,i);
		x=0;
		for(int j=n;j>=1;j--){
			if(cnt[i][j]==1) x++, r[i].set(j,x);
			else{
				x=0;
			}
		}
	}
	while(m--){
		int pos,val;
		scanf("%d%d",&pos,&val);
		for(int i=0;i<20;i++)
			sum+=solve(pos,val>>i&1,i);
		printf("%I64d\n",sum);
	}
	return 0;
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值