自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(15)
  • 收藏
  • 关注

转载 python之zip函数和sorted函数

列表,字典,元组的合并与排序

2022-06-18 00:31:06 690

转载 深度学习环境配置:PyTorch环境配置及安装

PyTorch环境配置及安装 - 土堆碎念 - 博客园

2021-12-28 20:31:27 272

转载 Tensorflow学习笔记:Jupyter Notebook中cell操作

Jupyter Notebook中的cell操作 - 木子章 - 博客园

2021-12-23 10:52:35 374

原创 Tensorflow学习笔记:简单的回归问题(代码)

import tensorflow as tfimport numpy as npimport matplotlib.pyplot as plt#生成样本数据#生成一个200行,1列的x数据x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]#生成和x数据形状一样的随机噪音数据。np.random.normal()的意思是一个正态分布,第一个参数表示均值,第二个表示方差,第三个表示数据存储的形状noise = np.random.normal(0.

2021-12-23 10:23:04 609

转载 深度学习环境配置:Anaconda的使用及配置方法

Python学习之Anaconda的使用及配置方法_LiangJishengBlog-CSDN博客_python使用conda

2021-12-22 10:22:04 103

原创 Tensorflow错误集 | FailedPreconditionError

1、问题原因:Tensorflow中,所有变量都必须初始化才能使用。2、操作被拒绝,因为系统不处于执行状态.在初始化变量之前运行读取 tf.Variable 的操作时,通常会引发此异常.3、循环嵌套了session

2021-12-20 15:12:59 1086

原创 TensorFlow学习笔记:Anaconda安装虚拟环境及Jupyter切换虚拟环境

## 虚拟环境1. 创建虚拟环境conda create -n tf14cpu python=3.72. 激活虚拟环境conda activate tf14cpu3. 退出虚拟环境conda deactivate4. 删除虚拟环境conda remove -n tf14cpu --all## 导入离线包1. 在cmd终端进入到对应目录下2. pip install 离线包.whl## jupyter切换虚拟环境- 简单方式通过进入到虚拟环境,再输入jupyter notebo

2021-12-20 10:29:41 520

原创 李宏毅深度学习笔记(CNN)

卷积神经网络(CNN)为什么使用CNN?CNN可以很好用于图像的处理,这主要基于两个假设:图像中同样的特征片段可能出现在不同的位置。图像上不同小片段,以及不同图像上的小片段的特征是类似的,也就是说,我们能用同样的一组分类器来描述各种各样不同的图像 。 最底层特征都是局部性的,局部特征远小于图像本身。也就是说,我们用10x10这样大小的过滤器就能表示边缘等底层特征 对像素进行子采样不会改变图像CNN架构最典型的卷积网络,由卷积层、池化层、全连接层组成。其中卷积层与池化层配合,

2021-12-16 10:40:35 3077

原创 李宏毅深度学习笔记——深度学习基本概念

深度学习神经网络神经元示意图(转载)Inputs:输入。Weights:权值,权重。Bias:偏置,或者称为阈值 (Threshold)。Activation function:激活函数。1958年,计算科学家Rosenblatt提出了由两层神经元组成的神经网络。在“感知器”中,有两个层次。分别是输入层和输出层。输入层里的“输入单元”只负责传输数据,不做计算。输出层里的“输出单元”则需要对前面一层的输入进行计算。与神经元模型不同,感知器中的权值是通过训

2021-12-14 12:47:01 1503

转载 李宏毅深度学习笔记——逻辑回归

逻辑回归Logistic Regression 虽然被称为回归,但其实际上是分类模型,并常用于二分类。Logistic 回归的本质是:假设数据服从这个分布,然后使用极大似然估计做参数的估计。Logistic 回归实际上是使用线性回归模型的预测值逼近分类任务真实标记的对数几率,其优点有:直接对分类的概率建模,无需实现假设数据分布,从而避免了假设分布不准确带来的问题(区别于生成式模型); 不仅可预测出类别,还能得到该预测的概率,这对一些利用概率辅助决策的任务很有用; 对数几率函数是任意阶

2021-12-14 12:23:40 290

原创 李宏毅深度学习笔记(各种优化方法)

主要思路有两种:固定学习率和动态变化学习率固定学习率:代表算法SGD, SGDM(SGD with Momentum)动量梯度下降法SGD最大的缺点是下降速度慢,而且可能会在沟壑的两边持续震荡,停留在一个局部最优点。为了抑制SGD的震荡,SGDM认为梯度下降过程可以加入惯性。下坡的时候,如果发现是陡坡,那就利用惯性跑的快一些。SGDM全称是SGD with momentum,在SGD基础上引入了一阶动量mt,t 时刻的下降方向,不仅由当前点的梯度方向决定,而且由此前累积的下降方向决

2021-12-11 10:45:41 845

原创 李宏毅深度学习笔记(机器学习错误的来源)

机器学习错误的来源为什么一个复杂的模型不能在测试集上得到很好的性能,模型泛化能力该如何解释?模型的错误有两个原因导致:偏差(bias)和 方差(variance)偏差(bias)衡量模型的拟合能力,即模型能否很好瞄准目标函数,在图上表示的就是模型f预测输出的期望与目标点的距离: Y为真实值,为模型f预测输出的期望方差(variance):反映了训练集数据变化对模型f输出的扰动。如果模型f是没有的bias的,那么这些扰动输出的期望应该在...

2021-12-11 10:39:38 1832 1

原创 李宏毅深度学习笔记(梯度下降法小贴士)

梯度下降法小贴士 Tip1 学习率如何调节更有效率?学习率过大和过小都不利于找到最优点,一个直观的想法是学习率随时间变化而变化,搜索刚开始的时候距离最优点较远,学习率可以大一些,加快搜索速度。在距离目标近的时候减小学习率。Adagrad 方法:每个参数学习率不同Tip2 随机梯度下降Stochastic Gradient Descent原始方法需要计算所有样本后,再计算梯度;随机梯度梯度下降法,只需计算一个样本的梯度,加快了收敛速度。...

2021-12-11 10:30:35 1828

原创 李宏毅机器学习笔记(第一天)

李宏毅机器学习笔记:线性回归建模与模型改进实例机器学习目的: 机器自动找函数回归问题(Regression):函数输出是标量例子:预测pokemon(口袋精灵)的进化值任务描述:Pokemon的特征有进化前cp值,种类,身高,体重等,需要通过已有的数据,学习出一个模型(函数),预测Pokemon进化后的cp值。如何寻找回归问题的函数?第一步:模型的建立简单的模型:y = b + w ∙xcp该模型输入为进化前cp值, w,b是参数复杂模型.

2021-12-09 18:54:02 77

原创 李宏毅机器学习笔记(第一天)

李宏毅机器学习笔记:线性回归建模与模型改进实例机器学习目的: 机器自动找函数回归问题(Regression):函数输出是标量例子:预测pokemon(口袋精灵)的进化值任务描述:Pokemon的特征有进化前cp值,种类,身高,体重等,需要通过已有的数据,学习出一个模型(函数),预测Pokemon进化后的cp值。如何寻找回归问题的函数?第一步:模型的建立简单的模型:y = b + w ∙xcp该模型输入为进化前cp值, w,b是参数复杂模型:.

2021-12-09 18:48:21 505

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除