Tensorflow学习笔记:简单的回归问题(代码)

import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

#生成样本数据
#生成一个200行,1列的x数据
x_data = np.linspace(-0.5,0.5,200)[:,np.newaxis]
#生成和x数据形状一样的随机噪音数据。np.random.normal()的意思是一个正态分布,第一个参数表示均值,第二个表示方差,第三个表示数据存储的形状
noise = np.random.normal(0,0.02,x_data.shape)
#定义y值
y_data = np.square(x_data) + noise

#定义预测值,用两个占位符代表输入和输出
x = tf.placeholder(tf.float32,[None,1])
y = tf.placeholder(tf.float32,[None,1])

#定义一个神经网络:输入层1个神经元,中间层10个神经元,输出层1个神经元
#定义中间层权值,1行10列的矩阵(1个输入,10个中间层输出)
weights_L1 = tf.Variable(tf.random.normal([1,10]))
bias_L1 = tf.Variable(tf.zeros([1,10]))
w_x_b_L1 = tf.matmul(x,weights_L1) + bias_L1
L1_output = tf.tanh(w_x_b_L1) 
#L1_output = tf.sigmoid(w_x_b_L1) 
print(L1_output)

#定义输出层。1个神经元,权值为10行1列矩阵
weight_L2 = tf.Variable(tf.random.normal([10,1]))
bias_L2 = tf.Variable(tf.zeros([1,1]))
w_L1_b_L2 = tf.matmul(L1_output,weight_L2) + bias_L2
prediction = tf.tanh(w_L1_b_L2)
#prediction = tf.sigmoid(w_L1_b_L2)
print(prediction)

#定义loss函数
loss = tf.reduce_mean(tf.square(y - prediction))

#定义优化器
optimizer = tf.train.GradientDescentOptimizer(0.1)

#定义最小化训练
train = optimizer.minimize(loss)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    
    for step in range(1000):
        sess.run(train,feed_dict={x:x_data,y:y_data})

    prediction_value = sess.run(prediction,feed_dict={x:x_data})
    plt.figure()            
    plt.scatter(x_data,y_data)
    plt.plot(x_data,prediction_value,'r-',lw=5)
    plt.show()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值