文章目录
一、概述
有人认为,编程语言不要学过多,精通一门即可,对此观点不做评价,仁者见仁。不过个人建议如果是计算机专业的人员,还是鼓励多多了解学习多种不同的编程语言,感受其背后的编程哲学或体现的编程范式,表达能力, 语法,性能等等,对编程的理解会有很多益处。
Curry编程语言概述
Curry 是一种声明式多范式编程语言 ,它无缝地融合了 函数式编程 (嵌套表达式、高阶函数、强类型、惰性求值)和逻辑编程 (非确定性、内置搜索、自由变量、部分数据结构)的特性。与单一编程范式相比,Curry 提供了一些额外的特性,例如面向逻辑计算的最优求值,以及与用户定义函数的灵活的非确定性模式匹配。
起源与设计目标
Curry由德国卡尔斯鲁厄理工学院(KIT)和达姆斯塔特工业大学(TU Darmstadt)的研究人员共同开发,设计初衷是结合函数式编程的强大表达能力与逻辑编程的非确定性和约束求解能力,为程序员提供一种更高级、更灵活的编程环境,以应对复杂问题的求解。
主要特性
- 函数式编程特性
- 纯函数:Curry中的函数是纯函数,即相同的输入总是产生相同的输出,没有副作用。这使得代码更易于理解、测试和调试。例如,一个简单的加法函数
add x y = x + y
,无论何时调用,只要输入的x
和y
相同,结果就一定相同。 - 高阶函数:支持高阶函数,函数可以作为参数传递给其他函数,也可以作为返回值返回。这为代码的抽象和复用提供了极大的便利。比如
map
函数可以将一个函数应用到列表的每个元素上,map f [x1, x2, ...] = [f x1, f x2, ...]
。 - 模式匹配:通过模式匹配可以方便地处理不同结构的数据。例如,定义一个列表求和函数:
- 纯函数:Curry中的函数是纯函数,即相同的输入总是产生相同的输出,没有副作用。这使得代码更易于理解、测试和调试。例如,一个简单的加法函数
sumList [] = 0
sumList (x:xs) = x + sumList xs
- **惰性求值**:采用惰性求值策略,只有在真正需要某个值时才会进行计算。这可以避免不必要的计算,提高程序的效率。
- 逻辑编程特性
- 非确定性操作:允许程序在执行过程中进行非确定性选择。例如,在生成列表的排列时,可以非确定性地将一个元素插入到列表的不同位置,从而生成所有可能的排列。
- 约束求解:能够处理约束条件,自动寻找满足这些约束的解。在解决一些组合优化问题时,Curry可以通过约束求解来找到最优解。
语法结构
Curry的语法与Haskell有一定的相似性,但也有自己的特点。它使用函数定义、模式匹配、条件语句等来构建程序。例如,定义一个判断列表是否有序的函数:
sorted [] = True
sorted [_] = True
sorted (x:y:ys) | x <= y = sorted (y:ys)
这里使用了模式匹配来处理不同长度的列表,同时使用了条件语句(|
)来进行条件判断。
应用场景
- 问题求解:由于其非确定性和约束求解能力,Curry在组合优化、规划、调度等问题求解领域有广泛的应用。例如,在资源分配问题中,可以通过定义约束条件,让Curry自动寻找最优的分配方案。
- 声明式编程:适合用于需要声明式描述问题的场景,程序员只需要描述问题的约束和目标,而不需要详细指定解决问题的具体步骤。
- 教育领域:作为一种融合了多种编程范式的语言,Curry可以帮助学生更好地理解函数式编程和逻辑编程的概念和思想。
开发工具与生态系统
目前有一些支持Curry开发的工具和环境,如KiCS2(KIT Curry System 2),它是一个Curry编译器,提供了编译、调试等功能。不过,与一些主流编程语言相比,Curry的生态系统相对较小,库和框架的数量有限,但也在不断发展和完善中。
总体而言,Curry是一种具有独特魅力和潜力的编程语言,它为解决复杂问题提供了一种新的思路和方法,但由于其相对小众,在广泛应用方面还面临一定的挑战。
Curry的基本语法同Haskell很相似,如果有一定的haskell基础,可以比较容易的看懂curry。本文对curry的基础语法不进行介绍,主要介绍两个特性,非确定性和自由变量,这也是curry语言比较有特色的地方。也就是curry编程像是一个自动求解器,通过求解最优给出满足约束的解。
二、非确定性操作例子解析
-- 这是一个在 Curry 程序中使用非确定性操作的示例。
-- 我们希望通过选择一个已排序的排列来对一个列表进行排序。
-- 首先,我们定义将一个元素非确定性地插入到一个列表中。一个元素可以按两种规则被插入到一个列表中,
-- 要么插入到列表的开头(第一条规则),要么插入到列表的尾部(第二条规则)。
ndinsert :: a -> [a] -> [a]
ndinsert x ys = x : ys
ndinsert x (y:ys) = y : ndinsert x ys
-- 一个列表的排列可以通过将第一个元素非确定性地插入到其余元素的某个排列中得到。
perm :: [a] -> [a]
perm [] = []
perm (x:xs) = ndinsert x (perm xs)
-- 接下来,我们定义一个部分谓词,如果参数列表是已排序的,即如果所有元素按升序排列,那么该谓词求值为真。
sorted :: Ord a => [a] -> Bool
sorted [] = True
sorted [_] = True
sorted (x:y:ys) | x<=y = sorted (y:ys)
-- 对一个列表进行排序意味着找到它的一个已排序的排列:
sort :: Ord a => [a] -> [a]
sort xs | sorted ys = ys
where ys = perm xs
-- 对一个示例列表进行排序:
main = sort [4,1,2,6,5,3]
以下是对这段Curry语言代码的详细解释:
代码整体功能概述
这段代码主要展示了如何在Curry程序中使用非确定性操作来对列表进行排序。其核心思路是通过生成列表的所有排列组合,然后从中找出有序的排列,以此实现列表的排序。
代码逐段解释
1. ndinsert
函数
ndinsert :: a -> [a] -> [a]
ndinsert x ys = x : ys
ndinsert x (y:ys) = y : ndinsert x ys
- 功能:该函数用于非确定性地将一个元素插入到列表中。
- 类型签名:
ndinsert :: a -> [a] -> [a]
表示该函数接受一个类型为a
的元素和一个类型为[a]
的列表,返回一个类型为[a]
的列表。 - 规则解释:
ndinsert x ys = x : ys
:将元素x
插入到列表ys
的头部。ndinsert x (y:ys) = y : ndinsert x ys
:将元素x
插入到列表(y:ys)
的尾部,即先将列表的第一个元素y
取出,然后递归调用ndinsert
函数将x
插入到剩余列表ys
中,最后再将y
放回列表头部。
2. perm
函数
perm :: [a] -> [a]
perm [] = []
perm (x:xs) = ndinsert x (perm xs)
- 功能:该函数用于生成列表的所有排列组合。
- 类型签名:
perm :: [a] -> [a]
表示该函数接受一个类型为[a]
的列表,返回一个类型为[a]
的列表。 - 规则解释:
perm [] = []
:空列表的排列就是空列表。perm (x:xs) = ndinsert x (perm xs)
:对于非空列表(x:xs)
,先递归地生成剩余列表xs
的所有排列,然后将第一个元素x
非确定性地插入到这些排列中。
4. sorted
函数
sorted :: Ord a => [a] -> Bool
sorted [] = True
sorted [_] = True
sorted (x:y:ys) | x<=y = sorted (y:ys)
- 功能:该函数用于判断一个列表是否是有序的(升序排列)。
- 类型签名:
sorted :: Ord a => [a] -> Bool
表示该函数接受一个类型为[a]
的列表,其中a
必须是可比较的类型(实现了Ord
类型类),返回一个布尔值。 - 规则解释:
sorted [] = True
:空列表被认为是有序的。sorted [_] = True
:只包含一个元素的列表也被认为是有序的。sorted (x:y:ys) | x<=y = sorted (y:ys)
:对于包含至少两个元素的列表(x:y:ys)
,如果第一个元素x
小于等于第二个元素y
,则递归地检查剩余列表(y:ys)
是否有序。
4. sort
函数
sort :: Ord a => [a] -> [a]
sort xs | sorted ys = ys
where ys = perm xs
- 功能:该函数用于对列表进行排序。
- 类型签名:
sort :: Ord a => [a] -> [a]
表示该函数接受一个类型为[a]
的列表,其中a
必须是可比较的类型(实现了Ord
类型类),返回一个类型为[a]
的列表。 - 规则解释:
sort xs | sorted ys = ys
:如果ys
是有序的,则返回ys
。where ys = perm xs
:使用perm
函数生成列表xs
的所有排列,然后从中选择一个有序的排列作为排序结果。
5. main
函数
main = sort [4,1,2,6,5,3]
- 功能:该函数是程序的入口点,调用
sort
函数对列表[4,1,2,6,5,3]
进行排序。
这段代码通过非确定性操作生成列表的所有排列,然后从中选择一个有序的排列作为排序结果。这种方法虽然简单直观,但在处理大规模列表时效率较低,因为需要生成所有可能的排列。
三、 自由变量
-- 一个经典的函数式逻辑程序,用于展示自由变量在编程中的使用。
-- 我们想要定义一个函数来计算列表的最后一个元素。
-- 为了实现这个目的,我们利用标准的连接两个列表的函数,该函数可以如下定义
-- (它在标准预定义库中被定义为 `++`):
conc :: [a] -> [a] -> [a]
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys
-- 如果列表 `xs` 等于某个列表与单元素列表 `[x]` 的连接结果,
-- 那么 `x` 就是列表 `xs` 的最后一个元素。
-- 我们通过将这个规范作为一个条件来定义操作 `last` 从而利用它。
-- 当调用 `last` 时,最后一个元素和 “某个列表” 是未知的,
-- 所以我们将它们作为自由变量引入
-- (条件中的下划线缩写表示一个匿名自由变量,
-- 即一个只出现一次的自由变量)。
last xs | conc _ [x] =:= xs
= x
where x free
main = last [1..50]
这段代码目的是找出列表中的最后一个元素。下面我们来简单解释一下代码里各个函数和操作的工作原理。
1. conc
函数
这个函数的作用是把两个列表连接起来,和其他语言里常见的列表拼接操作类似。
conc :: [a] -> [a] -> [a]
conc [] ys = ys
conc (x:xs) ys = x : conc xs ys
- 类型签名
conc :: [a] -> [a] -> [a]
:表明conc
函数接收两个列表作为参数,然后返回一个新的列表。这里的a
是一个泛型,表示列表里元素的类型可以是任意的。 - 具体规则:
conc [] ys = ys
:要是第一个列表为空,那么连接的结果就是第二个列表。举个例子,把空列表[]
和列表[1, 2, 3]
连接,结果就是[1, 2, 3]
。conc (x:xs) ys = x : conc xs ys
:要是第一个列表不为空,就把第一个列表的第一个元素x
拿出来,再递归地把剩余的列表xs
和第二个列表ys
连接起来,最后把x
放到结果列表的最前面。比如,连接[1, 2]
和[3, 4]
,先把1
拿出来,递归连接[2]
和[3, 4]
得到[2, 3, 4]
,再把1
加在前面,最终结果就是[1, 2, 3, 4]
。
2. last
函数
这个函数的任务是找出列表的最后一个元素。
last xs | conc _ [x] =:= xs
= x
where x free
- 原理:如果一个列表
xs
可以表示成某个列表(用下划线_
表示,它是一个匿名自由变量,意思是我们不关心这个列表具体是什么)和一个只包含元素x
的列表[x]
连接后的结果,那么x
就是列表xs
的最后一个元素。 - 规则解释:
last xs | conc _ [x] =:= xs
:这是一个条件语句,=:=
是Curry里的等式约束操作符。它会检查是否存在一个列表,让这个列表和[x]
连接起来等于xs
。= x
:如果上述条件满足,就把x
作为结果返回。where x free
:这里的x
是一个自由变量,意味着在求解等式约束时,Curry会自动寻找合适的x
值,使得条件成立。
3. main
函数
main = last [1..50]
这是程序的入口,它调用 last
函数,传入一个包含从 1 到 50 的整数列表 [1..50]
,然后计算并输出这个列表的最后一个元素,也就是 50。
总的来说,这段代码通过 conc
函数实现列表连接,再利用 last
函数的等式约束找出列表的最后一个元素,最后在 main
函数里进行测试。