78. 子集
中等
给你一个整数数组 nums
,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。
解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。
示例 1:
输入:nums = [1,2,3] 输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]
class Solution {
List<List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> subsets(int[] nums) {
backTracking (nums,0);
return result;
}
private void backTracking(int[] nums,int idx){
result.add(new ArrayList<>(path));
if(idx >= nums.length){
return;
}
for(int i = idx; i<nums.length; i++){
path.add(nums[i]);
backTracking(nums,i+1);
path.removeLast();
}
}
}
小结:
1.标准的三部曲,和树型结构
2.但是要注意这里的终止条件是idx>= nums.length ; for 循环里面是i<nums.length
因为结果是子集,是每一个节点,所以只需要idx>= nums.length;
90. 子集 II
中等
给你一个整数数组 nums
,其中可能包含重复元素,请你返回该数组所有可能的子集(幂集)。
解集 不能 包含重复的子集。返回的解集中,子集可以按 任意顺序 排列。
示例 1:
输入:nums = [1,2,2] 输出:[[],[1],[1,2],[1,2,2],[2],[2,2]]
class Solution {
List<List<Integer>> res = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
boolean [] used;
public List<List<Integer>> subsetsWithDup(int[] nums) {
if(nums.length==0){
res.add(path);
return res;
}
Arrays.sort(nums);
used = new boolean[nums.length];
backTracking(nums,0);
return res;
}
private void backTracking(int[] nums, int idx){
res.add(new ArrayList<>(path));
if(idx>= nums.length) return;
for(int i =idx; i<nums.length; i++){
if(i>0&&nums[i]== nums[i-1]&&!used[i-1]){
continue;
}
path.add(nums[i]);
used[i]=true;
backTracking(nums,i+1);
path.removeLast();
used[i]=false;
}
}
}
小结:
1.这里注意用used 数组进行树层去重,而保留树枝,
而idx 控制递归
2.获得每个节点,都是结果。所以再递归一开始就加入结果,同时终止条件可看作将数组历遍结束,idx>=nums.length
3.可以不用used 的数组,但是和排列问题不通用
参考:
class Solution {
List<List<Integer>> res = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> subsetsWithDup( int[] nums ) {
Arrays.sort( nums );
subsetsWithDupHelper( nums, 0 );
return res;
}
private void subsetsWithDupHelper( int[] nums, int start ) {
res.add( new ArrayList<>( path ) );
for ( int i = start; i < nums.length; i++ ) {
// 跳过当前树层使用过的、相同的元素
if ( i > start && nums[i - 1] == nums[i] ) {
continue;
}
path.add( nums[i] );
subsetsWithDupHelper( nums, i + 1 );
path.removeLast();
}
}
}
491. 递增子序列
中等
给你一个整数数组 nums
,找出并返回所有该数组中不同的递增子序列,递增子序列中 至少有两个元素 。你可以按 任意顺序 返回答案。
数组中可能含有重复元素,如出现两个整数相等,也可以视作递增序列的一种特殊情况。
示例 1:
输入:nums = [4,6,7,7] 输出:[[4,6],[4,6,7],[4,6,7,7],[4,7],[4,7,7],[6,7],[6,7,7],[7,7]]
示例 2:
输入:nums = [4,4,3,2,1] 输出:[[4,4]]
提示:
1 <= nums.length <= 15
-100 <= nums[i] <= 100
class Solution {
List <List<Integer>> result = new ArrayList<>();
LinkedList<Integer> path = new LinkedList<>();
public List<List<Integer>> findSubsequences(int[] nums) {
backTracking(nums, 0);
return result;
}
private void backTracking(int [] nums, int idx){
if(path.size()>1){
result.add(new ArrayList<>(path));
}
int [] used = new int[201];
for(int i = idx; i < nums.length; i++){
if(!path.isEmpty()&&nums[i]<path.getLast()||(used[nums[i]+100]==1)){
continue;
}
used[nums[i]+100]=1;
path.add(nums[i]);
backTracking(nums,i+1);
path.removeLast();
}
}
}
小结:
1. 注意这里的递增子集要求,示例2 表示这里是由顺序,所以不可以sort()
2.这里去重,实际也是广度去重,深度不去重。 升序子集就还会剪小于上一个数的枝条
3.用used 数组记录会比map 和 set 更省空间