有N堆石子。A B两个人轮流拿,A先拿。每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N及每堆石子的数量,问最后谁能赢得比赛。
例如:3堆石子,每堆1颗。A拿1颗,B拿1颗,此时还剩1堆,所以A可以拿到最后1颗石子。
Input
第1行:一个数N,表示有N堆石子。(1 <= N <= 1000) 第2 - N + 1行:N堆石子的数量。(1 <= A[i] <= 10^9)
Output
如果A获胜输出A,如果B获胜输出B。
Input示例
3 1 1 1
Output示例
A
有N堆石子。A B两个人轮流拿,A先拿。每次只能从一堆中取若干个,可将一堆全取走,但不可不取,拿到最后1颗石子的人获胜。假设A B都非常聪明,拿石子的过程中不会出现失误。给出N及每堆石子的数量,问最后谁能赢得比赛。
例如:3堆石子,每堆1颗。A拿1颗,B拿1颗,此时还剩1堆,所以A可以拿到最后1颗石子。
证明我不会,我只知道,当这些数都做异或运算时等于0时,先手输,否则后手输
只有两堆的话,第一个人取石头使得两堆的石头数相等(A胜),如果一开始石头就相等(B胜)
#include<bits/stdc++.h>
using namespace std;
int main()
{
int n,i,j,ans,t;
cin>>n;
for(i=0;i<n;i++) {
cin>>t;
if(!i) ans=t;
else ans=ans^t;
}
if(ans) cout<<"A"<<endl;
else cout<<"B"<<endl;
return 0;
}