最小最大堆

#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>

#define MAX_SIZE 100
#define SWAP(x,y,t) ((t)=(x),(x)=(y),(y)=(t))
typedef struct
{
  int key;
  // other field
}element;
element heap[MAX_SIZE];
void min_max_insert(element heap[],int *n,element item);//插入
int level(int n);///判断父结点在小层还是大层
void verify_max(element heap[],int i,element item);
void verify_min(element heap[],int i,element item);
element delete_min(element heap[],int *n);///删除最小值
int min_child_grandchild(int j,int n);//找到j结点子孙中最小值的位置


void min_max_insert(element heap[],int *n,element item)
{
 int parent;
 ++(*n);
	  if(*n==MAX_SIZE)
	  {
	    fprintf(stderr,"the heap is full\n");
	    exit(1);
	  }
	  
	  parent=(*n)/2;
	  if (!parent)
	  {
	  	heap[1]=item;
	  }
	  else switch(level(parent))
	  {
		 case 0:/父在小层
		   if(item.key<heap[parent].key)
		   {//只比较最小层
		     heap[*n]=heap[parent];
		     verify_min(heap,parent,item);
		   }
		   else
		   {//只比较最大层
		     verify_max(heap,*n,item);
		   }
		                                    break;
		 case 1:/父在大层
		   if(item.key>heap[parent].key)
		   {//只比较最大层
		     heap[*n]=heap[parent];
		     verify_max(heap,parent,item);
		   }
		   else
		   {//只比较最小层
		     verify_min(heap,*n,item);
		   }
	  }
}
int level(int n)/判断父结点在小层还是大层
{
	printf("%d\n",( (int)( log(n)/log(2) ) )%2 );
  return ( (int)( log(n)/log(2) ) )%2;
}

void verify_max(element heap[],int i,element item)
{
 int grandparent = i/4;
 while(grandparent) 先判断是否还有爷爷结点
	 {
		  if(item.key > heap[grandparent].key)//item的大于爷爷结点的
		  {
		   heap[i]=heap[grandparent];
		   i = grandparent;
		   grandparent /= 4;
		  }
		  else
		    break;
	}
 heap[i] = item;//找到应该插入的位置
}
void verify_min(element heap[],int i,element item)
{
 int grandparent = i/4;
 while(grandparent)先判断是否还有爷爷结点
	 {
		  if(item.key < heap[grandparent].key)//item的小于爷爷结点的
		  {
		   heap[i]=heap[grandparent];
		   i = grandparent;
		   grandparent /= 4;
		  }
		  else
		    break;
	  }
 heap[i] = item;找到应该插入的位置
}


element delete_min(element heap[], int *n)
{
        if(*n < 1) {/为空时
                printf("heap is empty\n");
                exit(1);
        }
        if(*n == 1) return heap[(*n)--];///case 1 只有一个数时

        element item = heap[(*n)--];//item为最后面的那个值
        heap[0].key = heap[1].key;heap[0]为返回值
        int k, i, last = (*n)/2, parent;

        for(i=1; i<=last; ) {
                k = min_child_grandchild(i,*n);找到i结点的子孙最小的一个位置k

                if(item.key <= heap[k].key) break;///case 2(a)//小于或等于最小值

                heap[i] = heap[k];//最小值向上跑
                if(k <= 2*i+1) //说明k是i的两个儿子的结点下标
                {//case 2(b)
                        i = k;
                        break;
                }

               parent = k/2;//case 2(c)说明k是i的孙子
                if(item.key > heap[parent].key) 
                {
                        element temp = item;
                        item = heap[parent];
                        heap[parent] = temp;
                }
                i = k;
        }

   heap[i] = item;
    return heap[0];//返回最小值
}
 
int min_child_grandchild(int j,int n)///找到j结点子孙中最小值的位置
{
	int min=j+1;
	for (int i =j+2 ; i <= n; ++i)
		if (heap[min].key > heap[i].key) min=i;
 return min;
}
/*
int min_child_grandchild( int i, int n)//找到i结点子孙中最小值的位置
{
   int min = 2*i;

        int k[5] = {2*i+1, 4*i, 4*i+1, 4*i+2, 4*i+3};

        for(int j=0; k[j]<=n&&j<=4; ++j) {

                if(heap[k[j]].key < heap[min].key)

                        min = k[j];

        }

        return min;
}
*/



int main(int argc, char const *argv[])
{
	int n=0;
	element ht[7]={15,7,2,30,9,10,40};
	for(int i = 0; i < 7; ++i)
	{
		min_max_insert(heap,&n,ht[i]);
	};
for (i = 1; i < 8; ++i)
{
	printf("%d\n", heap[i].key);
}

delete_min(heap,&n);
for (i = 1; i < 7; ++i)
{
	printf("%d\n", heap[i].key);
}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

紫云的博客

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值