#include<stdio.h>
#include<math.h>
#include<string.h>
#include<stdlib.h>
#define MAX_SIZE 100
#define SWAP(x,y,t) ((t)=(x),(x)=(y),(y)=(t))
typedef struct
{
int key;
// other field
}element;
element heap[MAX_SIZE];
void min_max_insert(element heap[],int *n,element item);//插入
int level(int n);///判断父结点在小层还是大层
void verify_max(element heap[],int i,element item);
void verify_min(element heap[],int i,element item);
element delete_min(element heap[],int *n);///删除最小值
int min_child_grandchild(int j,int n);//找到j结点子孙中最小值的位置
void min_max_insert(element heap[],int *n,element item)
{
int parent;
++(*n);
if(*n==MAX_SIZE)
{
fprintf(stderr,"the heap is full\n");
exit(1);
}
parent=(*n)/2;
if (!parent)
{
heap[1]=item;
}
else switch(level(parent))
{
case 0:/父在小层
if(item.key<heap[parent].key)
{//只比较最小层
heap[*n]=heap[parent];
verify_min(heap,parent,item);
}
else
{//只比较最大层
verify_max(heap,*n,item);
}
break;
case 1:/父在大层
if(item.key>heap[parent].key)
{//只比较最大层
heap[*n]=heap[parent];
verify_max(heap,parent,item);
}
else
{//只比较最小层
verify_min(heap,*n,item);
}
}
}
int level(int n)/判断父结点在小层还是大层
{
printf("%d\n",( (int)( log(n)/log(2) ) )%2 );
return ( (int)( log(n)/log(2) ) )%2;
}
void verify_max(element heap[],int i,element item)
{
int grandparent = i/4;
while(grandparent) 先判断是否还有爷爷结点
{
if(item.key > heap[grandparent].key)//item的大于爷爷结点的
{
heap[i]=heap[grandparent];
i = grandparent;
grandparent /= 4;
}
else
break;
}
heap[i] = item;//找到应该插入的位置
}
void verify_min(element heap[],int i,element item)
{
int grandparent = i/4;
while(grandparent)先判断是否还有爷爷结点
{
if(item.key < heap[grandparent].key)//item的小于爷爷结点的
{
heap[i]=heap[grandparent];
i = grandparent;
grandparent /= 4;
}
else
break;
}
heap[i] = item;找到应该插入的位置
}
element delete_min(element heap[], int *n)
{
if(*n < 1) {/为空时
printf("heap is empty\n");
exit(1);
}
if(*n == 1) return heap[(*n)--];///case 1 只有一个数时
element item = heap[(*n)--];//item为最后面的那个值
heap[0].key = heap[1].key;heap[0]为返回值
int k, i, last = (*n)/2, parent;
for(i=1; i<=last; ) {
k = min_child_grandchild(i,*n);找到i结点的子孙最小的一个位置k
if(item.key <= heap[k].key) break;///case 2(a)//小于或等于最小值
heap[i] = heap[k];//最小值向上跑
if(k <= 2*i+1) //说明k是i的两个儿子的结点下标
{//case 2(b)
i = k;
break;
}
parent = k/2;//case 2(c)说明k是i的孙子
if(item.key > heap[parent].key)
{
element temp = item;
item = heap[parent];
heap[parent] = temp;
}
i = k;
}
heap[i] = item;
return heap[0];//返回最小值
}
int min_child_grandchild(int j,int n)///找到j结点子孙中最小值的位置
{
int min=j+1;
for (int i =j+2 ; i <= n; ++i)
if (heap[min].key > heap[i].key) min=i;
return min;
}
/*
int min_child_grandchild( int i, int n)//找到i结点子孙中最小值的位置
{
int min = 2*i;
int k[5] = {2*i+1, 4*i, 4*i+1, 4*i+2, 4*i+3};
for(int j=0; k[j]<=n&&j<=4; ++j) {
if(heap[k[j]].key < heap[min].key)
min = k[j];
}
return min;
}
*/
int main(int argc, char const *argv[])
{
int n=0;
element ht[7]={15,7,2,30,9,10,40};
for(int i = 0; i < 7; ++i)
{
min_max_insert(heap,&n,ht[i]);
};
for (i = 1; i < 8; ++i)
{
printf("%d\n", heap[i].key);
}
delete_min(heap,&n);
for (i = 1; i < 7; ++i)
{
printf("%d\n", heap[i].key);
}
return 0;
}
最小最大堆
最新推荐文章于 2024-11-08 13:43:29 发布