1. 并集
-
定义:两个集合 A 和 B 的并集是包含所有属于 A 或 B 的元素的集合。
-
符号:A∪B
-
公式:
A∪B={x∣x∈A 或 x∈B}
2. 交集
-
定义:两个集合 A 和 B 的交集是包含所有同时属于 A 和 B 的元素的集合。
-
符号:A∩B
-
公式:
A∩B={x∣x∈A 且 x∈B}
3. 差集
-
定义:两个集合 A 和 B 的差集是包含所有属于 A 但不属于 B 的元素的集合。
-
符号:A∖B 或 A−B
-
公式:
A∖B={x∣x∈A 且 x∉B}
4. 补集
-
定义:给定全集 U,集合 A 的补集是包含所有不属于 AA 的元素的集合。
-
符号:
-
公式:
-
={x∣x∈U 且 x∉A}
5. 对称差集
-
定义:两个集合 A 和 B 的对称差集是包含所有属于 A 或 B 但不同时属于两者的元素的集合。
-
符号:AΔB
-
公式:
AΔB=(A∖B)∪(B∖A)
6.重要的规律:德摩根律
补
第一条:
证明:
-
设 x∈(A∪B)c。
-
这意味着 x∉A∪B。
-
即 x∉A 且 x∉B。
-
因此,x∈Ac且 x∈Bc。
-
所以 x∈Ac∩Bc。
-
-
设 x∈Ac∩Bc。
-
这意味着 x∈Ac且 x∈Bc。
-
即 x∉A且 x∉B。
-
因此,x∉A∪B。
-
所以 x∈(A∪B)c。
-
综上,(A∪B)c=Ac∩B。
第二条:
韦恩图总结:
-
第一条:
表示两个圆之外的部分。
-
第二条:
表示除了两个圆重叠部分之外的所有区域。