离散数学 微课版-1.2集合的运算

1. 并集

  • 定义:两个集合 A 和 B 的并集是包含所有属于 A 或 B 的元素的集合。

  • 符号:A∪B

  • 公式

    A∪B={x∣x∈A 或 x∈B}

2. 交集

  • 定义:两个集合 A 和 B 的交集是包含所有同时属于 A 和 B 的元素的集合。

  • 符号:A∩B

  • 公式

    A∩B={x∣x∈A 且 x∈B}

3. 差集

  • 定义:两个集合 A 和 B 的差集是包含所有属于 A 但不属于 B 的元素的集合。

  • 符号:A∖B 或 A−B

  • 公式

    A∖B={x∣x∈A 且 x∉B}

4. 补集

  • 定义:给定全集 U,集合 A 的补集是包含所有不属于 AA 的元素的集合。

  • 符号: ^{c}

  • 公式A^{c}

  • A^{c}={x∣x∈U 且 x∉A}

5. 对称差集

  • 定义:两个集合 A 和 B 的对称差集是包含所有属于 A 或 B 但不同时属于两者的元素的集合。

  • 符号:AΔB

  • 公式

    AΔB=(A∖B)∪(B∖A)

6.重要的规律:德摩根律

第一条:(A\cup B)^{c}=A^{c} \cap B^{c}

证明:
  1. 设 x∈(A∪B)c。

    • 这意味着 x∉A∪B。

    • 即 x∉A 且 x∉B。

    • 因此,x∈Ac且 x∈Bc。

    • 所以 x∈Ac∩Bc。

  2. 设 x∈Ac∩Bc。

    • 这意味着 x∈Ac且 x∈Bc。

    • 即 x∉A且 x∉B。

    • 因此,x∉A∪B。

    • 所以 x∈(A∪B)c。

综上,(A∪B)c=Ac∩B。

第二条:(A\cap B)^{c}=A^{c} \cup B^{c}

韦恩图总结:

  • 第一条(A\cup B)^{c}=A^{c} \cap B^{c}表示两个圆之外的部分。

  • 第二条(A\cap B)^{c}=A^{c} \cup B^{c}表示除了两个圆重叠部分之外的所有区域。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值