在大模型公司做Prompter是种怎样的体验

#BG

2014-2019:安徽双非-城乡规划-本科

2019-2022:南京985-城市规划-硕士

#工作经历

2022.07-2023.07:设计院做城市设计;

2023.08-至今:国内大模型公司prompter(提示词工程师)

01

2022年刚毕业,怀揣着理想,对城市设计行业还是有期许的,幻想着改变中国城市面貌。

当时领导跟我画的饼比我画的还要大。说好了第一年好好沉淀、认真画图,成为小组长;然后第二年,拓展技能点、学习汇报、项目管理、向上管理、甲方管理等综合技能,成为项目经理;再成长几年,成为项目负责人,拿着项目分成,去带项目,走向人生巅峰啦。

所以,领导说"小伙子啊,你要沉淀,要成长。"翻译一下就是:"你要加班,要熬夜。“毕竟刚毕业,热情腾腾的,我当时就信了,跟着领导披荆斩棘、加班加点。当时的字典里充满"节后第一天送审”、"下班前发给我"这种丧心病狂的词。

我当时还傻乎乎地在小红书上分享设计方案,幻想着有朝一日成为设计院的当红炸子鸡。结果呢?我成了设计院里的大炸鸡,每天被各种图纸的deadline炸得外焦里嫩。

图 / 小红薯的一些记录(自从转行了,就没再更新了)

就这么热气腾腾(傻傻呼呼)地呆到2023年,在领略到上到“空间营造”、“在地性表达”、“场所精神”;下到“预借奖金”、“所内统筹”、“5小时会议”等等行业黑话后,我只能安慰着自己,或者催眠自己:成为大师,不就得学海无涯苦作舟吗?

可问题是,这舟是诺亚方舟呢?还是泰坦尼克号呢?

02

然后,平地一声惊雷响,2023年3月chatgpt来了。

当时的我为一个城市设计方案绞尽脑汁,ppt里堆满了"营城九法"、“山水通廊”、"特色地段"这些听起来高大上实则毫无意义的词汇和设计说明;还有除了押韵,其他都不同的城市设计七言绝句。用完chatgpt后发现,这些都不是问题了。

这玩意儿简直就是摸鱼神器啊!不对,是生产力的革命。认真学习多年的"专业能力",居然不如一个AI。这感觉,像是大学辛辛苦苦学了三年仿宋体,最后不得不承认,你的努力没啥用。

于是,我白天依旧地画着永远不会实现的城市蓝图,晚上到点下班就偷偷跑,去自习室自学到深夜十一点多回家。当时学习资料还不像现在那么系统,资料很杂,只要和大模型沾边的资料自己都看,然后整理到自己的笔记里。

图 / 我的部分笔记

我还偷偷在公司最贵的电脑上部署了SD和本地大模型。领导有次问我干嘛,我拿出早就准备好的说辞,说:“大模型为了解放大家的生产力,可以带来更高的项目业绩。”

但事后我也反思SD文生图应用于建筑设计行业的局限性,主要卡点在于可控性,大多数图片第一眼看上去还可以,但仔细一推敲,还是很缺乏专业性。

图 / SD生图的一些尝试

6月份,我开始谋划跳槽。没有互联网经验?没关系,面试就是我的实习,把面试官当老师,把面试当免费课,靠着面试反馈来积累各类知识与经验。反正失败是常态,成功只是偶然,自己就是一个行走的"试错模型"。

7月份,攒够了经验,终于成功找到了一家大模型公司的工作。虽然当时的我对人工智能的理解可能还停留在"人工"这个层面,但是没关系,先上车再买票。

03

回顾一下自己当初的决策心路:选完赛道,便思考现阶段该选择什么职业,去参与这场革命呢?

目标是大模型赛道嘛,那时候想得比较直接,直接从招聘软件上过滤大模型初创公司和互联网公司的HC,看看目标赛道的岗位有什么要求?

大体上分为3类:

一种算法类,偏向于研究大模型,提升大模型的性能;

一种开发类,偏向于应用大模型,封装大模型的能力至软件某项功能中;

一种产品类,偏向于应用大模型,把软件设计得更加满足用户需求。

先把不能选的排除吧,算法、开发、运维、数分等职位直接略过。别人的履历都是竞赛金牌、大厂实习、手撕代码;只学过概率论、高等数学都没学过的我瑟瑟发抖(还是很想吐槽这点,大学数学不学,真的非常限制就业方向),实在是打不过,我直接略过了算法类和开发类岗位。

那接下来,只能从产品类挑选。传统的产品岗位也有很多细分,有不同功能模块的产品经理(计算机视觉、语音识别、平台、对话系统、数据分析等等)、交互设计产品经理(UI)、用户体验产品经理(UX)、解决方案产品经理(SA)等等。随着chatgpt等大模型爆火,还有一类产品经理,即prompter,提示词工程师的岗位也越来越多。

图 / 产品岗位与薪资

当时我的策略是,所有产品类岗位都投简历,哪家简历通过了,就面哪家。面试失败了,就复盘一下潜在的失败原因,补充相关知识后,继续面下一家。

其次,面试顺序还是有讲究的,先面小厂和一些创业公司,一半通过一半挂,有了一定的基本盘后;再面大厂,百度挂在二面、字节挂在三面,还有一些研究院也通过了,最后也很幸运地面上了一家清华系的大模型公司,担任prompt。

04

什么是prompt岗位?

具体来说:专门设计、优化和改进用于与大型语言模型互动的指令或问题。

日常工作是设计高效的提示词来引导大模型生成期望的输出;

进阶工作,则是利用结合coze、dify、清流等大模型低代码平台引导大模型生成期望的输出,这里会涉及到整体架构设计、代码能力、大模型能力边界等等;

再往上,做的也更综合一些,把控客户需求、协调团队成员、产品沟通开发、推进项目进度等等。

图/prompt低代码平台示例

也有同事会玩一些更酷的大模型,比如通过照片计算每餐的热量消耗、写爱恨情仇、恩怨纠葛,剪不断理还乱的长篇小说、大模型理财投资策略、大模型文字游戏等等潮流产品,做出的产品也非常酷炫。

就这样体验了一年多,我也是有一些感悟。

先说俗的吧,薪资方面,之前我在设计院一年15w多些,现在的一年30w少些;

再说点雅的,原来外面的世界这么丰富,压力依旧在,丰富更是有。

说到压力,主要有两种:创新压力和未来压力。

一方面,关于创新压力,毕竟大模型是刚出炉的新技术,是不成熟的。具体来说,有如下几方面:

垂直知识深度:专业领域往往需要深厚的背景知识和行业经验。即使是大模型,通常难以达到专业人员在特定领域的知识深度。

数理推算:大模型数学推理能力弱主要是其本身的transformer架构的限制,其基于token级别的从左到右的“一次性”推理机制,与人类“综合性”的逻辑推理存在一定区别,导致其生成的内容缺乏清晰的逻辑。最简单的问题,模型区分不出3.11和3.9哪个大;数不清strawberry有几个r;玩不好24点游戏等等。

模型幻觉:由于许多数据集可能已经过时或不可靠,这会导致大模型依赖于不准确或过时的信息,从而产生幻觉。因此,你可以让它写出“林黛玉倒拔垂杨柳”、“孙悟空三打黑熊精”的不符合事实性的回答。而且由于训练语料的时效性,它们是不知道前段时间中国足球踢日本0:7的。

当然,还有其他问题,比如模型的幽默性太奇怪;多模态模型的认知广度、拓展性等等问题,这些在应用场景下问题,是我们需要去优化解决。

所以,碰见一些超过大模型能力边界外的case,经常一起开碰头会,从算法、开发、产品等等角色,集思广益地解决这块问题,虽然有些问题还是难以解决。

另一部分压力,主要源于对于未来不确定性的压力。

在设计院中,你的故事剧本是早就写好的,从画图、考证、项目负责人,再一步一步往上爬,努力了十几年然后当个所长。但是大模型这条赛道太新了,发展得太快了,是一条还没有GPS导航的道路。你只能自己摸索关于对这个行业的认知。特别是那些技术术语,我每天都得偷偷问ChatGPT,也担心暴露自己是个AI界的文盲。这也倒逼自己,每天都需要学习,遗憾的是,学习的速度远远赶不上大模型更新的速度。

加上,同事都对于未来大模型的选择很多,有的准备创业、有的准备比赛、有的准备商业化等等,走的路子会很出其不意;但目前自己走的比较老套,还是考证+工作那套,希望不断考证、不断积攒、不断沉淀。这块还是缺乏更高的视角,自己也知道这点要改,但不知道怎么改,也是极其苦恼的点。

05

再说说精彩吧,我竟然发现:

原来,这个世界上真的存在周末!周末加班,竟然是可以调休的;

原来,开会是可以1个小时内结束,不需要每个会议都3个小时起步;

原来,放假前一天可以早点下班,不用每次放假前领导都喊一句我们来开个会,直到晚上10点;

原来,每年的年假是可以使用的,不用再担心同事带头内卷,5年都不休年假;

刚来的时候,晚上九点了,有的同事抱怨怎么还不下班;我就在想,怎么九点了,就可以下班了呢?;

虽说晚上偶尔也会加班到九十点,但经过设计院的毒打之后,觉得科技公司的剥削还算稍微轻点。

……

呆了一年之后,见了很多人,才更加感叹,人生真tm是旷野呀,原来有好多人都过得如此丰富。

有同事从大厂来,顶尖学府毕业,出过国,国内大厂,创过业,buffer叠满了;为了跟进大模型,卖了公司,沉淀学习。

也有不少同事工作一年后,去了大厂,薪资立涨50%,升职加薪,迎娶白富美。

还有一个还在读大学的实习生,在过年期间推出了一款大模型游戏,抓住了一大波流量,把自己的创业团队卖了几百万,直接财富小自由。

当然,也不是所有人都那么幸运,有老师做了法律大模型,至今每月活跃用户不超过30位。这让我想起了以前画的图纸,估计看过的人差不多这个数字。

跌跌撞撞地摸爬滚打了一年多的时间,有时候会回想:一年后、十年后、三十年后的我会不会后悔这次选择?

我想答案是走一步看一步,毕竟是自己选择的路,最终解释权在自己手里。 在一开始使用中,自己真实地感受到大模型可以帮我写代码、改稿子、出主意、闲聊等等,真正地感受到自己的生产力提升。原本要写三天的设计说明,半天就能写完,半天再改改就可以交差。

正是因为这点,我相信大模型是第四次科技革命的星星之火,智能会如同煤炭、石油、电力一样,终将会带来持续的社会演化,大模型的未来还会很久。这是我选择这条赛道的初心。

以上,是关于自己从设计院转行至大模型一年的一些故事,虽说没那么精彩,但如果可以为有兴趣转行【大模型赛道】的朋友们,提供一些“避坑指南”,那就是极好的。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

最后,感谢每一个认真阅读我文章的人,礼尚往来总是要有的,下面资料虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值