利用大模型提升护理与老年照护:一个AI驱动的框架 - 复旦、上交等

摘要

本文探讨了大型语言模型(LLMs)在护理和老年照护领域的应用,重点关注AI驱动的患者监测和互动。我们引入了一个新颖的中文护理数据集,并实施了增量预训练(IPT)和监督式微调(SFT)技术,以提升LLMs在特定任务中的性能。通过LangChain,我们开发了一个能够实时护理和个性化干预的动态护理助手。实验结果显示了显著的改进,为满足老龄化人口日益增长的医疗需求提供了AI驱动的解决方案。

核心速览

研究背景

  1. 研究问题:这篇文章探讨了大型语言模型(LLMs)在护理和老年护理中的应用,特别是AI驱动的患者监测和交互。

  2. 研究难点:护理场景比其他临床决策案例更复杂,涉及连续监测、实时决策和患者交互,要求模型能够处理多种模态输入并动态适应患者状况的变化。此外,护理任务通常涉及高水平的直接患者交互,要求模型能够实时处理复杂的多种模态输入。

  3. 相关工作:尽管LLMs在医疗领域的应用已经取得了显著进展,但在护理领域的专门应用仍然处于起步阶段。现有的研究主要集中在理论探索和未来的可能性,而不是实际应用。

研究方法

这篇论文提出了一种基于增量预训练(IPT)和监督微调(SFT)的方法,以提高LLMs在护理和老年护理任务中的性能。具体来说,

  1. 模型架构:基于先进的LLMs(如GLM4和LLaMA 3.1),通过监督微调(SFT)使其适应护理和老年护理任务。这些模型可以轻松集成多模态能力,通过投影和微调实现。

  2. 数据集:开发了一个名为“NursingPiles”的专用数据集,涵盖护理和老年护理的各种专业知识和来源。该数据集由教科书、手册、法律文件和研究论文中的文本合成,形成问答对。为了减轻微调过程中的灾难性遗忘,引入了开源数据集作为数据混合策略的一部分。

  3. 训练协议:使用参数高效的微调(PEFT)包和增量预训练(IPT)过程进一步优化模型性能。训练在8 x NVIDIA A100-80GB GPU上进行,微调总时间约为72小时,IPT阶段额外30小时。

  4. LangChain提示:提出了一个模块化的动态护理助手系统,能够处理患者护理的全生命周期,包括实时数据收集、个性化护理计划生成和持续监测。系统集成了IoT设备进行健康数据收集,基于AI的诊断和个性化护理建议。

实验设计

  1. 测试分数:使用精确度、召回率、F1值和准确度评估模型性能。结果表明,结合领域特定的预训练和微调的模型显著优于基线模型。GLM4-Chat 9B+IPT+SFT在精确度、召回率、F1值和准确度方面分别达到了86.78%、85.65%、86.21%和58.9%。

  2. 消融分析:通过分别移除IPT和SFT组件,评估其对模型性能的影响。结果显示,移除任一组件都会导致所有指标下降。例如,移除SFT后,LLaMA+IPT模型的召回率从78.09%下降到72.5%,F1值从77.75%下降到74.69%。

结果与分析

  1. 模型性能提升:结合IPT和SFT的模型在各项指标上均显著优于基线模型,特别是在精确度和F1值上表现突出。

  2. 组件重要性:消融分析表明,IPT和SFT都是模型性能优化的关键组件,缺一不可。

总体结论

这篇论文提出了一种利用增量预训练(IPT)和监督微调(SFT)将大型语言模型(LLMs)应用于护理和老年护理的方法。通过开发一个多层中文护理数据集,展示了其在特定任务中的有效性。此外,探索了基于LangChain的动态护理助手,实现了实时监测和个性化护理。研究结果表明,LLMs在应对老龄化人口对熟练护理服务日益增长的需求方面具有巨大潜力。

论文评价

优点与创新

  1. 开创性应用:首次将大型语言模型(LLMs)应用于护理和老年护理领域,提出了SOTA模型,并收集了特定领域的微调专业知识。

  2. 多层中文护理数据集:开发了第一个多层中文护理数据集“NursingPiles”,并通过消融研究证明了其有效性。还建立了一个基准测试集来评估基本的护理知识和技能。

  3. 动态护理助手:利用LangChain开发了能够实时监控和个性化干预的动态护理助手,支持患者全生命周期的护理管理。

  4. 多模态处理:探索了基于LLMs的护理机器人的使用,评估了它们在基本护理任务中的性能,并探索了其在护理环境中整合视觉处理的潜力。

  5. 安全性和隐私保护:设计了模块化的系统架构,确保患者信息的安全存储和管理,利用AES加密和KMS进行数据保护,并使用OAuth和JWT进行强大的身份验证。

不足与反思

  1. 模型局限:模型主要关注文本数据,需要进一步整合音频和视觉输入。

  2. 数据集局限:数据集主要集中在中国,限制了跨语言和文化的广泛适用性。

  3. 实时响应挑战:模型在实时临床环境中的响应能力仍然是一个挑战。

  4. 隐私和偏见:确保患者隐私、同意以及最小化AI驱动护理中的偏见需要进一步的考虑。

关键问题及回答

问题1:论文中提到的“NursingPiles”数据集是如何构建的?其结构和规模如何?

“NursingPiles”数据集是通过多个来源构建的,包括教科书、手册、法律文件和研究论文。具体来说,数据集包括以下几类数据:

  • 文本数据:从教科书、手册和行业规范中提取的文本数据,用于增量预训练(IPT)。

  • 单轮对话数据:基于研究论文的问答对,通过自问自答(SelfQA)生成,用于参数高效的微调(PEFT)。

  • 多轮对话数据:通过模拟场景生成的护理对话,包括单人和多人对话,用于PEFT。

  • 图像-文本对数据:从实际照片中收集的图像和文本对,用于监督微调(SFT)。

数据集的规模如下:

  • 文本数据:2,777,526个令牌

  • 单轮对话数据:17,580对

  • 多轮对话数据:1.5M对

  • 图像-文本对数据:2,510对

问题2:论文中提到的LangChain框架在动态护理助手系统中是如何应用的?其主要功能模块有哪些?

LangChain框架在动态护理助手系统中主要用于实现以下功能模块:

  1. 数据收集和监测:通过自然语言接口收集患者的反馈和健康数据,并将其转换为结构化数据。

  2. 触发护理诊断:根据患者的健康指标,自动触发护理诊断并生成相应的建议。

  3. 个性化护理计划生成:基于诊断结果,动态生成个性化的护理计划。

  4. 持续监测和反馈调整:通过持续的对话链收集患者的反馈,并根据反馈调整护理计划。

  5. 动态护理阶段过渡:根据患者的恢复情况,自动评估并触发不同护理阶段的过渡。

  6. 健康教育和随访支持:为患者提供康复阶段的健康教育材料和定期的随访提醒。

这些模块通过LangChain的模块化组件实现,包括提示(Prompts)、索引(Indexes)、链(Chains)、代理(Agents)和内存(Memory)。

问题3:实验结果表明,结合增量预训练(IPT)和监督微调(SFT)的模型在性能上有何显著提升?具体表现在哪些指标上?

实验结果表明,结合IPT和SFT的模型在各项指标上均显著优于基线模型。具体表现如下:

  • 精确度(Precision):GLM4-Chat 9B+IPT+SFT模型的精确度达到了86.78%,显著高于其他模型。

  • 召回率(Recall):该模型的召回率为85.65%,同样表现出色。

  • F1值(F1-score):F1值为86.21%,表明模型在精确度和召回率之间的平衡性较好。

  • 准确度(Accuracy):准确度为58.9%,虽然不是最高,但在所有模型中仍处于领先地位。

这些提升表明,结合领域特定的预训练和微调能够显著提高LLMs在护理和老年护理任务中的性能。

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值