【Dify+deepseek+MCP】从入门到精通,手把手教你效率开挂(二)

在开始给大家进行MCP的案例演示之前(正式发车),我们需要先全局认识各大平台/工具对于MCP的支持情况(查看地图)。(干货,建议收藏不迷路!👋👋👋)

“目前有哪些主流平台/三方工具支持MCP?”

“从哪里找到最新的MCP三方工具?”


1. 关键角色回顾:Host,Client,Server

从下图可知,大模型(Host)跑在MCP客户端(Client)上,我们完成任务所需要的工具和数据跑在MCP 服务器(Server)上。服务器和客户端之间,通过MCP协议进行通信和连接。

因此,我们需要了解的内容等于:目前市面上存在了哪些MCP客户端 和 MCP服务器。我们通过客户端和服务器的组合,就可以实现特定的任务。

img

快速**了解客户端和服务器有哪些关键能力,**便于判断MCP客户端和服务器能力。

  • Resources:允许服务器将结构化数据(如文件内容、API响应、数据库查询结果)以统一格式暴露给客户端,供LLM作为上下文使用。
  • Prompts:通过标准化模板定义LLM交互流程,支持动态参数注入和上下文感知。
  • Tools:标准化LLM与外部工具的交互协议,实现"模型决策-工具执行"的闭环。
  • Sampling:实现服务器与LLM的安全协作,通过人机审核机制保障生成内容合规性。
  • Roots:界定服务器可操作的资源范围,防止越权访问。

各能力匹配和使用的场景

img


2. MCP客户端有哪些?

根据不同的用途,我们可以对支持MCP客户端,进行分类并按需选用:

img

部分MCP客户端能力对比

客户端名称资源管理提示词工具调用采样协作资源边界核心特色
fast-agent唯一全功能支持,含端到端测试,适合企业级复杂场景
Claude Desktop App桌面级资源+提示词集成,适合本地文件与AI协同场景
Continue开发工具链深度集成,支持代码/文档实时交互
Daydreams Agents支持快速接入第三方服务,适合敏捷开发
Cursor专注代码编辑器工具集成,适合开发者
Microsoft Copilot Studio企业级低代码工具链,适合非技术用户
Zed提示词即插即用(通过斜杠命令),适合快速内容生成
Apify MCP Tester工具测试专用,支持爬虫/自动化验证

3. MCP服务器有哪些?

目前众多平台提供多种MCP服务器实现,包括文件系统、Postgres、Slack等流行企业系统的预构建MCP服务器。

img

分类工具名称核心功能支持协议备注
实用工具Time MCP Server提供时间和时区转换功能,支持 IANA 时区自动检测HTTP/SSE使 LLM 能处理时效敏感任务
自动化工具Playwright Mcp基于 Playwright 的 Web 自动化操作HTTP支持浏览器自动化测试和数据抓取
数据处理AgentQL MCP Server集成 AgentQL 数据提取能力HTTP结构化数据抽取工具
代码开发Roo Code在代码编辑器中部署 AI 代理团队MCP前身为 Roo Cline,支持协同开发
终端工具y-cli基于 Web 的 AI 模型终端聊天应用HTTP/WebSocket支持多模型切换
地图服务Amap Maps高德地图核心功能接入HTTP国内首个 MCP 兼容地图服务
地图服务Baidu Map百度地图核心 API 集成HTTP首批支持 MCP 协议的地图服务商
数据库工具Redis MCP Server提供标准化 Redis 键值存储交互工具RESP支持数据读写 / 过期时间设置等基础操作
网络工具Firecrawl MCP Server为 LLM 客户端添加网络抓取功能HTTP官方维护,支持动态页面渲染
IDE 扩展Continue创建 / 共享自定义 AI 代码助手MCP开源扩展,支持规则 / 提示 / 文档协同开发
设计工具Framelink Figma MCP Server提供 Figma 布局信息给 AI 编码代理HTTP支持设计稿转代码的自动化流程
设计工具BlenderMCP实现 Blender 与 Claude AI 的 3D 建模交互WebSocket支持提示驱动的建模操作
聊天界面Y Gui多模型支持的 Web 图形聊天界面HTTP/SSE可视化配置 MCP 服务器
聊天界面HyperChat支持多 LLM API 的生产力工具集成聊天客户端HTTP专注开放性和工具扩展性
搜索工具Perplexity Ask MCP Server无缝接入 Perplexity 搜索 APIHTTP支持在 MCP 生态内完成网络搜索
搜索工具Tavily MCP Server提供 Tavily 搜索服务集成HTTP支持深度网页内容抓取
开发平台Cherry Studio新版支持 MCP 协议HTTP企业级 AI 应用开发平台
版本控制Github MCP Server仓库管理 / 文件操作 / GitHub API 集成REST支持 issue 跟踪和 PR 操作
云服务AWS Kb Retrieval Server基于 Bedrock Agent Runtime 的知识库检索HTTP支持 AWS 知识图谱查询
智能体框架Sequential Thinking提供结构化问题解决工具MCP支持动态反思性决策流程

4. 如何获取最新资讯?

img

  • *MCP官方网站* - https://modelcontextprotocol.io,

    这是获取最新MCP资讯的首要资源,提供协议文档、SDK、规范和示例。

  • *Anthropic官方博客* - https://www.anthropic.com/news,Anthropic作为MCP的创建者,经常在博客上发布关于MCP的最新进展和更新。

  • *GitHub上的MCP组织仓库* - https://github.com/modelcontextprotocol,这里是MCP的核心SDK和实现的所在地,通过关注仓库的更新,可以获取最新的代码变化和功能添加。


5. 相关工具和资源

  • MCP Server Finder - 一个独立的社区站点,按语言、流行度和类别跟踪MCP服务器。

img

  • mcp.so - 这个网站提供了MCP服务器的大型集合,包括Awesome MCP Servers和Claude MCP集成。

img

  • MCP 组织仓库里的Server文件夹,可以找到官方/三方/社区的MCP服务器

    https://github.com/modelcontextprotocol/servers

img

如何学习AI大模型 ?

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

👉1.大模型入门学习思维导图👈

要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
在这里插入图片描述

👉2.AGI大模型配套视频👈

很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。

在这里插入图片描述
在这里插入图片描述

👉3.大模型实际应用报告合集👈

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)

在这里插入图片描述

👉4.大模型落地应用案例PPT👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)

在这里插入图片描述

👉5.大模型经典学习电子书👈

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
img

在这里插入图片描述

👉6.大模型面试题&答案👈

截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)

在这里插入图片描述
👉学会后的收获:👈
基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习

CSDN粉丝独家福利

这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】

读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈

(👆👆👆安全链接,放心点击)
### DifyDeepSeek 本地部署程 #### 准备工作 为了成功在 Mac 上完成 DifyDeepSeek 的本地部署,确保已经安装了必要的依赖项和软件包。这通常包括 Python 环境以及 Docker 或者其他容器解决方案来运行服务。 #### 配置环境变量 设置特定于项目的环境变量对于集成不同组件至关重要。当涉及到像 Ollama 这样的平台时,在 `/your/custom/path` 中定义自定义路径非常重要,比如 `/Users/yourusername/models`[^2]。此步骤有助于指定模型和其他资源存储的位置。 #### 安装与配置 Ollama Ollama 是连接 DifyDeepSeek 所必需的服务之一。为了让新设定的环境变量生效,需要重启 Ollama。可以通过“活动监视器”找到对应的进程并结束它,之后通过终端命令 `ollama serve` 来重新启动该服务。 #### 下载 DeepSeek 模型 根据计算机硬件条件挑选适合大小的预训练模型是优化性能的关键一步。对于一般用途来说,推荐先尝试较小规模的模型版本,例如 `deepseek-r1:1.5b`;而对于拥有更好计算能力的工作站,则可以选择更大型号如 `deepseek-r1:14b` 或 `deepseek-r1:32b`。下载所选模型可通过如下指令完成: ```bash ollama run deepseek-r1:1.5b ``` 如果目标是获取专门用于编程辅助的 DeepSeek 变体——即 `deepseek-coder`,则应执行下列命令来进行拉取操作[^3]: ```bash ollama pull deepseek-coder ``` #### 构建个人知识库 一旦上述准备工作就绪,就可以着手构建个性化的知识管理系统了。利用 Dify 平台提供的 API 接口和服务端点,能够轻松地将来自多个数据源的信息整合在一起,并借助 DeepSeek 实现智能化检索功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值