高光谱解混与变化检测专题

本文汇总了四篇关于利用深度学习进行高光谱图像解混的最新研究,包括基于卷积自编码器的盲分解方法、光谱混合模型启发的网络架构、非线性解混算法及深度自编码器网络的应用。这些工作展示了深度学习在高光谱图像分析中的潜力,特别是在复杂光谱信号的解析和非线性特征提取方面。
摘要由CSDN通过智能技术生成

利用深度学习做高光谱解混的论文(优选,稀疏解混未纳入)

1. 【TGRS-2020,一区】盲分解:Convolutional Autoencoder for Spectral Spatial Hyperspectral Unmixing

2. 【TGRS-2020,一区】盲分解和丰度反演:Spectral Mixture Model Inspired Network Architectures for Hyperspectral Unmixing

3. 【遥感学报-2020】非线性解混 Nonlinear hyperspectral unmixing algorithm based on deep autoencoder networks

高分五号高光谱图像自编码网络非线性解混

4.【TGRS-2019,一区】DAEN: Deep Autoencoder Networks for Hyperspectral Unmixing  自编码器+差分自编码器

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值