基于深度学习的高光谱解混的实用方法和众多方法的比较

本文提出了一种两阶段的全连接自监督深度学习网络,用于高光谱图像的盲解混。逆模型估计端元和丰度,而正向模型学习高光谱成像的物理特性。通过重建输入向量以实现自我监督,网络包括一个逆模型和一个前向模型,两者共同优化以最小化输入数据与重建数据之间的差异。网络经过训练后,仅使用逆模型即可提取端元矩阵和丰度向量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文一:A Practical Approach for Hyperspectral Unmixing Using Deep Learning

摘要

        之前的许多深度学习的方法大多需要以非混合组件的形式直接监督,很难用于实践。因此作者提出了一个两阶段的全连接自监督深度学习网络,以缓解这些在执行盲高光谱解混合中的实际问题。给定数据,第一阶段(逆模型)联合估计端元和丰度,而第二阶段(正模型)学习高光谱图像采集的物理特性。中心思想是在逆向模型中使用估计的端元和丰度来重建高光谱输入向量,这最好地将输入向量的基础物理呈现给正向模型。

方法

网络结构

如图 1 所示,所提出的架构分为两个阶段,由红色和蓝色虚线框表示。红色虚线框表示逆模型 IW 。我们用 FW (·) 表示前向模型(蓝色虚线框)。关键思想是找到一个高光谱向量 x,它是参数化逆算子 IW (·) 的输出,它最好地解释了给定的感测(输入)数据。特别地,从感知的高光谱向量r估计x的过程被定义为逆模型,并且从x估计感知的光谱向量r的过程被称为正向模型。因此,x 是从给定的感测高光谱数据向量 r 中估计的去噪高光谱数据向量。 

网络参数

逆模型 IW (·) 由具有七个全连接层的 AE 网络组成(图 1)。 激活函数 a 由下式给出

其中 W 是第 l 层和第 (l - 1) 层之间的连接权重。我们将 ReLU 结合为非线性,dropout 为 0.3,以避免过拟合。 l1 层包含 D 个神经元,然后分别在 l2、l3、l4 和  l5 层中包含 120、90、45 和 20 个神经元。 l6 层包含由 e 个神经元组成的谱向量 r 的丰度系数,其中和为一的约束由 softmax 合并为激活函数。 l6 层和输出层 l7 之间的连接权重表示大小为 D × e 的端元矩阵 M,而丰度向量的大小为 e × 1。参见图 1,前向网络 FW (·) 的输入为输入向量 r ,x 的重构表示,输出为 ^r。层 l8 和 l12 各包含 r 个节点,层 l9、l10、 l11 分别由 120、90 和 45 个神经元组成。五层全连接网络,如图 1 所示,采用 ReLU,dropout 为 0.3。前向模型在训练期间重建输入 x,以最好地解释获取的高光谱数据。

优化问题以及loss

其中 ^r 是重建的高光谱数据向量。 请注意,损失是在测量域中制定的,并且以 FW (IW (r)) 接近可用数据 r 的方式训练逆模型。 损失函数 L(·) 现在在测量空间上运行。 求解优化问题 (2) 得到 x = IW (r),即中间阶段的向量 x,如图 1 所示。直观地说,我们正在寻找由 {W, r} 参数化的向量 x 这最好地解释了可用数据 r。 这种方法被称为自我监督,因为感测数据本身提供了解决光谱分离逆问题的监督。 

使用可微损失函数 L 训练完整的网络,该函数是前向损失 (L f ) 和反向损失 (Li) 的相加

n 是高斯噪声.一旦网络训练好,我们只需要逆模型IW(·)进行测试,最终提取端元矩阵和对应的丰度向量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值