第一章
模型
扔石头问题
风轻云淡的一天,你站在水平地面上,手里拿
着一块石头,想要扔得越远越好。已知你能用多大
的力气扔出去,那么最重要的决策就是选择石头出
手时与地面的夹角。如果夹角太小,那么尽管石头
在水平方向的速度分量很大,也会很快落到地面
上,因而飞不出太远;反之,若夹角过大,石头能
在空中停留较久但掠过的水平距离却不远。很明显
我们需要在这中间作一些权衡。
利用牛顿物理学和微积分的一些初步知识,可 无力吐槽,经典例子,高中物理
以计算得到最佳的折中方案——石头离手时应与地
面呈45度夹角。就这个问题而言,这基本上是最简
洁优美的答案了。同样的计算还可以告诉我们石头
在空中的飞行轨迹是个抛物线,甚至还能得出脱手
后在空中任意时刻的速度有多大。
看起来,科学与数学相结合能够使我们预测石
块飞出去直至落地之前的一切行为。然而,只有在
我们作了许多的简化假设之后才能够如此。其中最
主要的假设是,作用在石头上的只有一种力,即地
球的引力,而且这种力的大小及方向在各处总是一
样的。但实际上并非如此,因为它忽略了空气阻
力、地球自转,也没有计入月球的微弱引力,而且
越到高处地球引力越小,在地球表面上“垂直向
下”的方向也随着具体位置的不同而逐渐变化。即
使你能够接受上述计算,45度角的结果也基于另一
个隐含假设:石头离手的初始速度与夹角无关。这
也是不正确的:实际上夹角越小,人能使上的力气
越大。
上述这些缺陷的重要性各有不同,我们在计算
和预测中应该采取怎样的态度来对待这些偏差呢?
把所有因素全部考虑在内进行计算固然是一种办
法,但还有一种远为明智的办法:首先决定你需要
达到什么样的精确度,然后用尽可能简单的办法达
到它。如果经验表明一项简化的假设只会对结果产
生微不足道的影响,那就应当采取这样的假设。
例如,空气阻力的影响相对来说是比较小的,
因为石头很小很硬,密度大。假如在出手角度上有
较大的误差,那么通过计入空气阻力来将计算复杂
化就没有多大意义。如果一定要考虑进去的话,以
下这条经验法则就足矣:空气阻力变大,则通过减
小出手角度来弥补。