面向优化同态加密在基于云的医学图像处理中的可用性
姆巴雷克·马尔万(&)、阿里·卡提特和哈桑·瓦赫曼
LTI实验室,TRI系,国家高级矿业学院‐杰迪代,舒艾布·杜卡拉大学,贾布兰·哈利勒·贾布兰大道,邮政信箱299,杰迪代,摩洛哥
marwan.mbarek@gmail.com, alikartit@gmail.com, hassan.ouahmane@yahoo.fr
摘要
毫无疑问,数字成像在疾病诊断和治疗中继续发挥着关键作用。近年来,医疗领域对使用云服务的兴趣日益增长。尽管云计算具有诸多优势,但向这一新范式的转变仍然带来了许多与隐私和数据保护相关的问题。因此,采用云服务这一新方法来重新审视医学图像处理问题显得尤为重要。我们重点强调同态加密方案,其在应对隐私和安全挑战方面发挥着重要作用。实际上,运行时间是这类算法的主要缺点之一。在此背景下,本文提出了一种旨在提升性能和安全性的新方法。该方法通过采用多智能体系统(MAS)并仅对感兴趣区域(RoI)的内容进行加密来实现目标。这将显著减少所需数据的规模,从而改善所提出框架的响应时间。此外,生成的感兴趣区域被划分为若干份额,并由分布在多个节点上的不同智能体进行处理。此方式旨在增强机密性和性能。实验结果证明,该方法是在加密域中进行数据加密的有效解决方案。事实上,该提议旨在减少使用同态算法加密图像所需的处理运行时间。
关键词 :云计算 Security Homomorphic加密 Image处理
1 引言
成像工具的主要目标是提高医疗服务的质量。事实上,医疗专业人员严重依赖这些应用程序来提取有意义的信息,从而帮助医生在疾病的最早阶段进行诊断。由于这些原因,医疗行业每天都会产生大量的医疗记录以满足日益增长的需求。尽管电子健康记录(EHR)系统是有用的工具,但处理和分析医学图像需要强大的软件和平台。因此,云计算系统已成为一种具有竞争力的解决方案。
已引起医疗机构关注。这种替代方案旨在解决现场基础设施问题。在这方面,该模型指的是一种向客户端提供按需服务的分布式系统。它融合了计算机科学不同领域的多种技术,包括面向服务的架构(SOA)、并行分布式系统(PDS)、虚拟化和数据去重[1, 2]。正如美国国家标准与技术研究院(NIST)所定义的那样,[3],这一新范式旨在通过互联网向客户端提供所需的资源。此外,云服务可根据客户端的需求,以最少的管理开销进行交付和释放。这使得用户能够随时随地普遍访问绝大多数远程云服务。在此范式中,用户根据按使用付费商业模式计费,以降低成本。总之,云计算是利用成本效益高的云服务分析医学图像的合适解决方案。在此框架下,医生或放射科中心将医学图像发送给云服务提供商,通过特定的图像处理操作对其进行分析。然后,结果以安全的方式返回给用户,如图1所示。
然而,基于云的医学图像处理模型在医疗领域的应用面临诸多障碍,尤其是安全问题[4]。通常情况下,这些问题主要由与云技术相关的漏洞和威胁引起,特别是虚拟资源管理[5, 6]。鉴于医学图像是关键数据,必须采取强有力的安全措施以防止未经授权的访问、使用和泄露。换句话说,在使用云服务时保护医学信息需要更多的安全措施,以满足安全性要求[7, 8]:机密性、完整性、可用性、数据所有权、认证、访问控制、匿名化、不可关联性、审计能力。为此,我们选择了一种基于多智能体系统和同态加密的新方法,以降低安全风险。
后续的讨论组织如下。第2节介绍了同态加密的基础知识及其在基于云的医学图像处理中的应用。在第3和4节中,我们讨论了常见的实现方法。第5节提出了所提出的框架以及涉及数据安全性的技术。在第6节中,我们展示实验结果。第7节中讨论了结论和对未来研究的建议。
2 云上图像处理中的同态加密
2.1 用于数据处理的同态加密方法
尽管云计算已获得巨大的经济效益,但数据处理的安全性和机密性仍需引起高度重视。因此,将图像处理外包给外部实体时,必须确保在此操作过程中数据隐私得到保障。迄今为止,传统的加密技术如RSA、DES和AES被用于维护数字记录的机密性。然而,图像处理中涉及的所有操作都需要将存储的图像解密为明文图像。因此,图像处理应用中的任何算法都只能在解密过程之后应用,如图2所示。尽管这种方法可以保护数据,但并不适用于医学图像处理。此外,将明文图像发送给外部实体进行处理会增加安全风险和漏洞。
为应对这一挑战,我们提出利用同态加密实现云计算环境下的安全图像处理。在此方案中,直接对加密图像执行计算操作。因此,云服务提供商可以在不知道密钥的情况下执行基本的代数运算,从而保护医疗数据免受不可信云服务提供商的威胁。事实上,同态算法的设计使得对加密数据执行任何操作后的解密结果,等同于在明文图像上执行相应操作的结果。在此方案中,用户将图像x加密得到E(x),随后云服务提供商对E(x)应用特定操作h。
2.2 同态加密方案
一般来说,如果可以使用两个加密值 Enc(x) 和 Enc(y) 来评估函数 f(x,y),则该加密系统具有同态性,其中 f 可以是 +、×、⊕ 等基本操作。换句话说,同态加密是一种在加密数据上执行算术运算的技术[9–14]。在这种方法中,组织在将医学图像上传到云计算之前,使用同态算法对其进行加密。然后,他们对存储的数据执行计算。通常,这些算法根据其同态性质分为两类:全同态加密(FHE) 和部分同态加密(PHE)。表1列出了一些知名的加密方案。
| 算法 | 年份 | 类型 | 属性 |
|---|---|---|---|
| RSA | 1978 | PHE | 乘法 |
| El Gamal | 1985 | PHE | 乘法 |
| Paillier | 1999 | PHE | 加法 |
| 迭代 | 2009 | PHE | 加法 |
| 杰恩特 EHES | 2009年FHE 2013 | FHE | 乘法和加法 |
3 相关工作
在[15]中,Challa等人使用同态加密方法来保护数字记录。这是通过采用带误差学习 (LWE)方案来确保在云计算中的数据处理安全。通过这种方式,作者能够执行加法和在不解密的情况下对加密数据执行乘法运算。在这种概念中,客户端在将医疗记录传输给云服务提供商(CSP)之前先对其进行加密。然后,第三方依赖所提出的方法,在不使用用户的私钥的情况下应用特定的图像处理操作。因此,该解决方案确保了基于云计算技术的图像处理过程中的安全与隐私。为了验证所提方法的有效性,进行了两项实验:图像加法和亮度增强操作。尽管该技术已被证明是安全的,但实际经验表明,该模型可能对系统性能产生负面影响。
在[16]中,作者采用同态加密技术来保护数据处理过程中敏感视觉数据的安全。更具体地说,他们使用剩余数系统(RNS)来分析医学图像,而不会泄露任何与密图相关的信息。该方法的核心思想在于,用户可以在加密数据上执行包括加法、减法和乘法在内的数学运算。这将在基于云的医学图像处理中保持数据隐私。例如,在本研究中,Sobel滤波器和边缘检测是对加密图像执行的两个主要操作。然而,显然计算时间是该概念的主要缺点之一。Kanithi和Latha [17] 提出了一种基于同态加密的解决方案,以保护离散小波变换(DWT)的安全。在此框架中,使用Paillier密码系统以安全的方式执行图像处理操作。通常,该方案涉及在加密数据上执行代数运算,尤其是加法。在这方面,对密图应用了二维Haar小波变换。随后,使用Paillier算法对近似系数进行加密。最后,结合Paillier和逆离散小波变换(IDWT)恢复密图。在[18]中,Habeed和Dayal Raj提出了一种新方法,用于在加密域中保障信号处理的安全。该方案主要依赖同态算法来满足安全性要求。更准确地说,在最后一步应用多级 DWT/IDWT以解决数据扩展问题。在此方案中,采用乘法逆方法(MIM)来降低量化因子。从技术上讲,作者依赖Paillier密码系统来保护医学图像免受内部攻击。
4 讨论
一般来说,同态加密技术旨在使云服务提供商能够在加密状态下处理医学图像。这促使人们越来越关注在基于云的图像处理服务中应用同态加密。因此,近年来已基于不同方案开发了许多框架。然而,该方法仍然面临严重限制,使得该概念的实际采用值得怀疑。一方面,部分同态加密(P.H.E.)方案已被证明能够抵御常见攻击和威胁。但它们大多数仅支持一种类型的代数运算。因此,在需要多种操作的实际应用中使用这些算法是一个挑战。为缓解此问题,建议采用基于不同方案的混合解决方案以满足应用需求。此外,引入了全同态加密 (FHE)方案,使用户能够执行不同的算术操作。
因此,一种方案可以同时执行加法和乘法。另一方面,应用同态密码系统会对系统性能产生负面影响,特别是运行时间。这可能会给云服务提供商带来严重的声誉问题。实际上,全同态加密方案比部分同态加密方案能更好地提升性能。然而,这两种方案距离实际适用于医学图像处理应用仍有较大差距。事实上,这些密码系统过于缓慢且耗时,如图4所示。
5 提出的架构以提高性能
应用同态加密方案的主要缺点是它们具有负面的时间效应。此外,医学图像的处理通常需要复杂的算法。为了解决这个问题,我们提出了一种框架,以提高云服务的性能和安全性。为此,所提出的解决方案由两个主要组件组成:CloudSec和CloudServ,如图5所示。
首先,医疗专业人员通过虚拟专用网络(VPN)将秘密的医学图像发送到CloudSec,以确保数据交换的安全。其次,CloudSec将有关数据所有者的所有信息保存在本地数据库中,并采取一切措施确保在云计算环境下的安全图像处理。最后,CloudServ提供所需的计算资源和强大的成像工具,以满足应用需求。
该架构的核心思想是引入CloudSec来委托所有安全措施。该模块是一个可信的外部方,充当代理。与传统架构不同,所提出的架构避免了对公共云服务的直接访问。这将降低数据泄露和威胁暴露的风险。
5.1 CloudSec的作用
CloudSec 是我们所提出的框架的核心元素。实际上,它是一个可信实体,充当客户端与不可信的云服务提供商之间的安全接口。换句话说,该组件旨在确保医学图像分析过程中的隐私和安全性。为了实现这一目标,我们首先确定每幅医学图像的感兴趣区域(RoI)和非感兴趣区域(RoNI)。更准确地说,仅从密图中提取感兴趣区域。该步骤将显著减小所需数据的规模,从而降低计算成本。其次,我们将获得的感兴趣区域分割为多个份额,以增强安全性和性能。该方法的原理如下图6所示。
6 实验验证
所提出的方法由两个主要步骤组成。首先,我们将感兴趣区域划分为多个区域,以增强安全性和性能。在这种情况下,生成的感兴趣区域被划分为四个子区域。因此,所提出技术的步骤如下所示的算法1中:
算法1:生成加密份额
输入:宿主图像 I (x × y)
输出:秘密份额 < R1, R2, R3, R4>
1: 选择感兴趣区域
2: 从输入图像中提取选定的区域
3:将感兴趣区域划分为四个子区域
返回 < R1, R2, R3, R4>
为了证明我们所提出概念的优势,本节将展示一个示例。因此,使用 MATLAB进行了仿真实验。在本研究中,我们使用一幅 256 × 256的医学图像 MRI。客户端从原始图像(a)中选择感兴趣区域,得到图像(b)。接着,将选定的部分分割为四个部分,如图(c)所示。实现结果如图8所示。
随后,我们在将每个子区域发送到CloudServ之前,使用EHES对其进行加密。CloudServ是一个多智能体系统,其中每个子区域由一个独立的智能体进行处理。
7 结论
基于云的医学图像处理是一种新兴概念,通过该概念,远程成像工具可通过互联网提供给医疗专业人员。与传统模式不同,这些复杂的软件和应用程序仅在需要时使用,并根据实际使用情况计费。因此,这一有前景的技术吸引了学术界和医疗行业的关注。尽管该技术具有诸多优势,但其仍未能充分抵御外部和内部威胁。在这方面,安全与隐私仍需进一步改进以满足医疗专业人员的需求。
为此,已有多种方法被提出,旨在推动利用云服务而非现场应用来进行医学图像处理。在本研究中,我们重点关注同态加密方法,该方法主要用于保护这一新型模式。如上所述,同态算法允许用户对加密数据执行算术运算。然而,所提出的方法在性能方面存在局限性。总体而言,大多数现有方案尚不成熟,因其耗时较长。因此,这些算法不适用于复杂图像处理操作,因其运行速度过慢。为应对这一挑战,我们提出一种方法以促进同态加密在数据处理中的应用。
在该模型中,CloudSec 是一个可信云,旨在降低与云技术相关的安全风险。为此,患者的身份信息(如姓名、地址、社会保障号码)被存储在安全本地数据库中,以实现匿名性和不可关联性。此外,我们将密图划分为两个主要区域:感兴趣区域(RoI)和非感兴趣区域(RoNI)。在此基础上,仅对感兴趣区域进行处理,以提升系统性能。随后,生成的感兴趣区域被分割为多个份额,以确保数据保密性。然后,在发送至云服务提供商之前,所有份额均被加密。所提出的框架还采用多智能体系统来降低计算成本,这是同态加密的主要缺点。
在未来工作中,我们计划使用EHES对生成的子区域进行加密,并将我们的框架与现有相关工作在性能方面进行比较。从应用前景来看,我们打算应用一些常用图像处理技术来验证所提出方案的正确性,包括对比度增强和边缘增强。
1202

被折叠的 条评论
为什么被折叠?



