局部线性嵌入(LLE)的代码示例以及详细数学解释

局部线性嵌入(LLE)的数学原理

局部线性嵌入(LLE)是一种非线性降维方法,它的目标是在较低维度空间中保持高维数据的局部特征。LLE的步骤可以概括如下:

  1. 邻域选择:对于每个数据点 x i x_i xi,找出其 k k k 个最近邻。

  2. 重建权重计算:对每个点 x i x_i xi,使用其邻域中的点来线性重建它,并找到重建误差最小的权重系数。这可以通过最小化下列代价函数实现:
    min ⁡ ∑ i ∣ x i − ∑ j ∈ N ( i ) W i j x j ∣ 2 \min \sum_i \left| x_i - \sum_{j \in N(i)} W_{ij} x_j \right|^2 mini xijN(i)Wijxj 2
    其中, N ( i ) N(i) N(i) 表示 x i x_i xi 的邻域中的点的集合, W i j W_{ij} Wij 是重建权重。

  3. 降维映射:在低维空间中寻找点 y i y_i yi 的集合,使得这些点保持原始重建权重所表示的局部几何结构。这涉及到最小化以下代价函数:
    min ⁡ ∑ i ∣ y i − ∑ j ∈ N ( i ) W i j y j ∣ 2 \min \sum_i \left| y_i - \sum_{j \in N(i)} W_{ij} y_j \right|^2 mini yijN(i)Wijyj 2

LLE的核心目标是在保留高维空间中局部结构的同时,找到数据点的低维表示 y i y_i yi

LLE中的重建权重计算

在LLE算法中,重建权重计算是一个关键步骤,目的是在高维空间中使用每个数据点的邻域来线性重建该点。这一步骤可以分解为以下几个部分:

  1. 选择邻域:对于每个数据点 x i x_i xi,根据某种准则(如欧几里得距离)找出其 k k k 个最近邻。

  2. 计算重建权重:对于每个点 x i x_i xi,找出一组权重 W i j W_{ij} Wij,使得使用这些权重线性组合邻域中的点所得到的重建点 x ^ i = ∑ j ∈ N ( i ) W i j x j \hat{x}_i = \sum_{j \in N(i)} W_{ij} x_j x^i=jN(i)Wijxj 与原始点 x i x_i xi 尽可能接近。这通过最小化下列代价函数实现:
    min ⁡ W i j ∑ i ∥ x i − ∑ j ∈ N ( i ) W i j x j ∥ 2 \min_{W_{ij}} \sum_i \| x_i - \sum_{j \in N(i)} W_{ij} x_j \|^2 WijminixijN(i)Wijxj2
    其中,约束条件是对于每个 i i i ∑ j ∈ N ( i ) W i j = 1 \sum_{j \in N(i)} W_{ij} = 1 jN(i)Wij=1

示例

假设我们的数据集包含三个点:A ( 0 , 0 ) (0, 0) (0,0),B ( 1 , 0 ) (1, 0) (1,0) 和 C ( 1 , 1 ) (1, 1) (1,1)。我们的目标是为点 A 计算重建权重,假设它的最近邻是点 B 和点 C。

  1. 定义重建误差:重建误差是原始点和基于其邻居的线性组合之间的差异。对于点 A,这个误差可以表示为:
    E = ∥ A − ( W A B ⋅ B + W A C ⋅ C ) ∥ 2 E = \| A - (W_{AB} \cdot B + W_{AC} \cdot C) \|^2 E=A(WABB+WACC)2
    其中, W A B W_{AB} WAB W A C W_{AC} WAC 是我们要找的重建权重。

  2. 应用约束条件:在LLE中,每个点的重建权重之和应该等于1,即 W A B + W A C = 1 W_{AB} + W_{AC} = 1 WAB+WAC=1。这保证了重建过程的稳定性。

  3. 构建并求解优化问题:我们需要最小化重建误差 E E E,同时满足权重的约束条件。将点 A, B, C 的坐标代入,并利用约束条件简化表达式,得到一个可以求解的优化问题。

考虑点 A ( 0 , 0 ) (0, 0) (0,0),点 B ( 1 , 0 ) (1, 0) (1,0) 和点 C ( 1 , 1 ) (1, 1) (1,1),我们可以将重建误差 E E E 表达为:
E = [ ( 0 − W A B ⋅ 1 − W A C ⋅ 1 ) 2 + ( 0 − W A B ⋅ 0 − W A C ⋅ 1 ) 2 ] E = \left[ (0 - W_{AB} \cdot 1 - W_{AC} \cdot 1)^2 + (0 - W_{AB} \cdot 0 - W_{AC} \cdot 1)^2 \right] E=[(0WAB1WAC1)2+(0WAB0WAC1)2]
根据约束条件 W A B + W A C = 1 W_{AB} + W_{AC} = 1 WAB+WAC=1,我们可以替换其中一个权重,比如用 W A B = 1 − W A C W_{AB} = 1 - W_{AC} WAB=1WAC
W A B = 1 − W A C W_{AB} = 1 - W_{AC} WAB=1WAC 代入代价函数,得到:
E = [ ( 0 − ( 1 − W A C ) ⋅ 1 − W A C ⋅ 1 ) 2 + ( 0 − ( 1 − W A C ) ⋅ 0 − W A C ⋅ 1 ) 2 ] E = \left[ (0 - (1 - W_{AC}) \cdot 1 - W_{AC} \cdot 1)^2 + (0 - (1 - W_{AC}) \cdot 0 - W_{AC} \cdot 1)^2 \right] E=[(0(1WAC)1WAC1)2+(0(1WAC)0WAC1)2]
简化后得到:
E = [ − 2 W A C + 1 ] 2 + [ − W A C ] 2 E = \left[ -2W_{AC} + 1 \right]^2 + \left[ -W_{AC} \right]^2 E=[2WAC+1]2+[WAC]2

  1. 求导:对 E E E 关于 W A C W_{AC} WAC 求导,得到:
    d E d W A C = 2 ( − 2 W A C + 1 ) ( − 2 ) + 2 ( − W A C ) ( − 1 ) \frac{dE}{dW_{AC}} = 2(-2W_{AC} + 1)(-2) + 2(-W_{AC})(-1) dWACdE=2(2WAC+1)(2)+2(WAC)(1)
    简化后得到:
    d E d W A C = 8 W A C − 4 − 2 W A C = 6 W A C − 4 \frac{dE}{dW_{AC}} = 8W_{AC} - 4 - 2W_{AC} = 6W_{AC} - 4 dWACdE=8WAC42WAC=6WAC4

  2. 求解最优权重:令导数等于零解出 W A C W_{AC} WAC
    6 W A C − 4 = 0    ⟹    W A C = 2 3 6W_{AC} - 4 = 0 \implies W_{AC} = \frac{2}{3} 6WAC4=0WAC=32
    因此, W A B = 1 − W A C = 1 3 W_{AB} = 1 - W_{AC} = \frac{1}{3} WAB=1WAC=31

综上所述,对于点 A,最优的重建权重是 W A B = 1 3 W_{AB} = \frac{1}{3} WAB=31 W A C = 2 3 W_{AC} = \frac{2}{3} WAC=32

这个结果表明,在使用点 B 和点 C 重建点 A 的过程中,点 C 对重建点 A 的贡献比点 B 大。

LLE降维映射的详细解释

在局部线性嵌入(LLE)算法中,降维映射是最后一个步骤,它的目标是在低维空间中找到一个数据点的新表示,这些新表示应保留高维空间中的局部结构。这是通过优化一个新的代价函数来实现的,该函数基于之前计算的重建权重。

  1. 定义低维映射的代价函数:假设 y i y_i yi 是高维空间中点 x i x_i xi 的低维表示。降维映射的目标是最小化以下代价函数:
    Φ = ∑ i ∥ y i − ∑ j ∈ N ( i ) W i j y j ∥ 2 \Phi = \sum_i \| y_i - \sum_{j \in N(i)} W_{ij} y_j \|^2 Φ=iyijN(i)Wijyj2
    其中, W i j W_{ij} Wij 是之前计算得到的重建权重, N ( i ) N(i) N(i) 是点 x i x_i xi 的邻域。

  2. 优化过程:这个优化过程寻找一组低维表示 { y i } \{y_i\} {yi},使得每个点 y i y_i yi 与使用其高维邻居的重建权重 W i j W_{ij} Wij 线性组合的低维表示尽可能接近。这个过程通常需要使用数值优化方法来实现,因为直接解析求解可能非常复杂。

  3. 保持局部结构:通过这种方式,低维表示 { y i } \{y_i\} {yi} 能够保留原始高维数据中的局部邻域关系。如果两个高维点在原始空间中彼此接近,它们的低维表示也会彼此接近。

LLE降维映射的示例

假设我们有一个简单的高维数据集,并且我们已经计算出了每个点的重建权重。现在,我们的目标是将这些点映射到低维空间(例如,从3维映射到2维)。我们将展示这个过程的简化版本。

示例数据集

考虑以下三维空间中的四个点:

  • 点 A: ( 1 , 2 , 3 ) (1, 2, 3) (1,2,3)
  • 点 B: ( 4 , 5 , 6 ) (4, 5, 6) (4,5,6)
  • 点 C: ( 7 , 8 , 9 ) (7, 8, 9) (7,8,9)
  • 点 D: ( 10 , 11 , 12 ) (10, 11, 12) (10,11,12)

假设我们已经根据LLE的第一步计算出了重建权重,例如:

  • 对于点 A,邻居是 B 和 C,权重分别是 W A B = 0.5 W_{AB} = 0.5 WAB=0.5 W A C = 0.5 W_{AC} = 0.5 WAC=0.5
  • 类似地,对于其他点也有类似的邻居和权重。
降维映射
  1. 优化问题:我们现在希望找到这些点在二维空间中的新表示 { y i } \{y_i\} {yi},使得代价函数 Φ \Phi Φ 最小:
    Φ = ∑ i ∥ y i − ∑ j ∈ N ( i ) W i j y j ∥ 2 \Phi = \sum_i \| y_i - \sum_{j \in N(i)} W_{ij} y_j \|^2 Φ=iyijN(i)Wijyj2
    在这个例子中,我们将求解一组新坐标 { y A , y B , y C , y D } \{y_A, y_B, y_C, y_D\} {yA,yB,yC,yD}

  2. 数值求解:在实际应用中,这通常需要使用数值优化方法,如梯度下降或特征值分解,来求解。

  3. 构建矩阵M:根据计算出的重建权重,我们构建一个矩阵M。这个矩阵的元素是通过比较每对点之间的重建权重差异得到的。对于点A,B,C和D,这个矩阵可能看起来像这样(这是一个简化的示例):
    M = [ 1 − 0.3 − 0.7 0 − 0.3 1 − 0.4 − 0.3 − 0.7 − 0.4 1 − 0.1 0 − 0.3 − 0.1 1 ] M = \begin{bmatrix} 1 & -0.3 & -0.7 & 0 \\ -0.3 & 1 & -0.4 & -0.3 \\ -0.7 & -0.4 & 1 & -0.1 \\ 0 & -0.3 & -0.1 & 1 \end{bmatrix} M= 10.30.700.310.40.30.70.410.100.30.11
    矩阵 M 的构建
    对角线元素:矩阵 M M M 的每个对角线元素 M i i M_{ii} Mii 反映了点 i i i 与其邻居的重建权重之和:
    M i i = 1 − ∑ j ∈ N ( i ) W i j 2 M_{ii} = 1 - \sum_{j \in N(i)} W_{ij}^2 Mii=1jN(i)Wij2
    其中, N ( i ) N(i) N(i) 表示点 i i i 的邻居集合, W i j W_{ij} Wij 是点 i i i 用于重建自己的来自邻居 j j j 的权重。
    非对角线元素(邻居间):对于邻居点 i i i j j j,矩阵 M M M 中的元素 M i j M_{ij} Mij 是它们之间的重建权重:
    M i j = − W i j 如果   j ∈ N ( i ) M_{ij} = -W_{ij} \quad \text{如果} \, j \in N(i) Mij=Wij如果jN(i)
    这表示点 i i i j j j 在重建过程中的直接影响。
    非对角线元素(非邻居间):对于不是邻居的点 i i i j j j,矩阵 M M M 的元素 M i j M_{ij} Mij 设为0:
    M i j = 0 如果   j ∉ N ( i )   且   i ∉ N ( j ) M_{ij} = 0 \quad \text{如果} \, j \notin N(i) \, \text{且} \, i \notin N(j) Mij=0如果j/N(i)i/N(j)

  4. 求解特征值问题:接下来,我们解决特征值问题 M v = λ v Mv = \lambda v Mv=λv,其中 v v v是特征向量, λ \lambda λ是特征值。我们关注的是最小的非零特征值对应的特征向量。

  5. 低维嵌入:找到对应最小非零特征值的特征向量后,这些特征向量(除了对应最小特征值的向量)构成了数据的低维嵌入。在我们的例子中,这将是一个2维表示。

从LLE的特征值和特征向量到低维数据(低维嵌入)

在LLE算法中,一旦计算出矩阵 M M M 的特征值和特征向量,我们可以按照以下步骤得到数据的低维表示:

特征值和特征向量的计算

  1. 求解特征值问题:首先,我们求解特征值问题 M v = λ v Mv = \lambda v Mv=λv,其中 v v v 是特征向量, λ \lambda λ 是对应的特征值。通常,这是通过数值方法完成的,如使用Python中的 numpy.linalg.eigh 函数。

  2. 排序特征值:求解后,我们得到一系列特征值和相应的特征向量。特征值按照从小到大的顺序排序,与之对应的特征向量也按同样的顺序排列。

选择特征向量以获得低维表示

  1. 选择最小的非零特征值:在LLE中,我们通常忽略最小的特征值(通常接近或等于零),因为它对应的特征向量通常是数据的平均值或类似的全局结构。

  2. 选择后续特征向量:为了得到 ( k ) 维的低维表示,我们选择紧随最小特征值之后的 ( k ) 个特征向量。例如,如果我们想将数据降至2维,我们将选择第二小和第三小的特征值对应的特征向量。

构建低维数据表示

  1. 构建特征向量矩阵:将选定的特征向量组合成一个矩阵,其中每一列是一个特征向量。假设我们选择了第二小和第三小的特征值对应的特征向量,那么这个矩阵将有两列。

  2. 转换为低维数据:这个特征向量矩阵就是数据点在低维空间中的新坐标。每个数据点的低维表示是这个矩阵中相应行的值。

代码

import numpy as np
from scipy.spatial.distance import pdist, squareform
from scipy.linalg import eigh

def compute_reconstruction_weights(X, k):
    n_samples = X.shape[0]
    W = np.zeros((n_samples, n_samples))
    for i in range(n_samples):
        distances = np.sum((X[i] - X) ** 2, axis=1)
        neighbors = np.argsort(distances)[1:k+1]

        # 构建局部邻域矩阵
        K = X[neighbors] - X[i]
        G = K.dot(K.T)
        G_inv = np.linalg.inv(G + np.eye(k) * 1e-3) # 加入小的正则项防止矩阵奇异

        # 计算重建权重
        weights = G_inv.sum(axis=1) / G_inv.sum()
        W[i, neighbors] = weights

    return W

def lle(X, k, n_components):
    W = compute_reconstruction_weights(X, k)

    # 构建矩阵 M
    M = (np.eye(len(X)) - W).T @ (np.eye(len(X)) - W)

    # 计算特征值和特征向量
    eigenvalues, eigenvectors = eigh(M, eigvals=(1, n_components))

    return eigenvectors

# 示例数据(可以是任意高维数据)
np.random.seed(0)
X = np.random.rand(10, 3) # 10个样本,每个样本3维

# 使用LLE降维到2维
embedded_X = lle(X, k=5, n_components=2)

print("低维表示:\n", embedded_X)

结果

请添加图片描述

  • 25
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
局部线性嵌入(Locally Linear Embedding,LLE)是一种非线性降维算法,用于从高维数据中提取其低维流形结构。它通过保持数据点之间的线性关系来实现降维,而不是简单地保持数据的距离关系。 LLE的基本思想是假设高维数据的低维表示可以通过将每个数据点与其邻居点进行线性组合来构建。具体来说,LLE将每个数据点表示为其邻居点的线性组合,使得该点与其邻居点之间的欧氏距离达到最小。然后,通过在低维空间中重建每个数据点的线性组合关系,LLE可以实现数据降维并保持其局部结构。 LLE算法包括以下步骤: 1. 寻找每个数据点的邻居点:根据设定的邻居数量,通过计算距离选择每个数据点的最近邻居。 2. 重建每个数据点的线性组合关系:对于每个数据点,根据其邻居点的权重,通过最小化重建误差来确定每个数据点的线性组合关系。 3. 构建低维表示:通过求解一个关于低维表示的优化问题,将高维数据映射到低维空间中。 LLE的优点是能够保持数据的局部结构,并且对噪声和非线性变换具有较好的鲁棒性。然而,LLE也存在一些缺点,如对邻居数量和权重的选择敏感,容易产生过拟合问题,并且计算复杂度较高。 总之,局部线性嵌入是一种通过保持数据点之间的线性关系来实现降维的非线性降维算法。它是一种有力的工具,可用于理解和分析高维数据集的结构。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

h52013141

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值