深度学习
文章平均质量分 67
手口一斤
这个作者很懒,什么都没留下…
展开
-
FPN-Feature Pyramid NetWorks
FPN : Feature Pyramid Networks 即 特征金字塔网络主要想法:用最少的资源进行多层特征融合检测,提升特征提取的效果,提升小目标检测率,提升检测或分割的整体效果;原创 2022-03-09 17:04:57 · 4017 阅读 · 0 评论 -
RoIAlign in Mask R-CNN
出自文章:Mask R-CNN总结起来就是:No quantization is performed on any coordinates involved in the RoI,its bins, or the sampling points。No quantization = bilinear 即把坐标量化更换为了双线性插值;替换在了:1、RoI:RPN得到的有目标的区域的边界坐标时;2、bins:RoI变成特征固定大小特征图中计算每个特征图的值时;3、sampling poin原创 2022-02-25 14:23:13 · 1816 阅读 · 0 评论 -
深度学习loss方法一览-混个眼熟(基于pytorch)
1、torch.nn.L1Loss平均绝对值误差:运算结果与基准之间对应元素之间的差值的绝对值组成的向量;如果使用mean参数,就是求这个向量的均值作为loss,如果是使用了sum就是这个向量的和作为loss;官方文档实现和原理见:https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html#torch.nn.CrossEntropyLoss2、torch.nn.MSELoss均方误差loss:运算.原创 2021-08-18 14:12:40 · 2149 阅读 · 0 评论 -
深度学习学习率调整方法汇总(pytorch)
1、lr_scheduler.LambdaLR将每个参数组的学习速率设置为给定函数的初始lr倍。学习率设置为函数的值;2、lr_scheduler.MultiplicativeLR将每个参数组的学习率乘以指定函数中给定的系数;3、lr_scheduler.StepLR每隔固定的epoch就根据给定的系数衰减一次学习率,Step指的是epoch;4、lr_scheduler.MultiStepLR给定epoch要更改的地方,然后按照指定系数衰减;注意与StepLR的区别在于,epo原创 2021-08-12 14:47:05 · 2398 阅读 · 1 评论 -
深度学习梯度下降优化方法分类汇总
Adadelta algorithm原创 2021-08-12 09:59:44 · 351 阅读 · 0 评论