背景
在实际工程场景的故障诊断工作中,机器很少出现故障,我们往往会面临采集到的设备故障数据不够的问题,没办法进行后续的训练和分类。这就需要我们对已知数据进行预处理工作。
问题分类
针对这一问题,现有的研究成果分为三类:基于数据增强的、基于特征学习的和基于分类器设计的。基于数据增强的是通过增强训练数据来提高诊断模型的性能。基于特征学习的是通过从小而不平衡的数据中提取特征来准确识别故障。基于分类器设计的是通过构造适合于小数据和不平衡数据的分类器来达到较高的诊断准确率。
策略分类
对于数据小且不平衡时有三大策略。
1.在原始数据传到输入端前进行数据增强。
① 用生成器模型生成数据
包括:生成对抗网络
可变的自动编码器
② 用采样技术对数据过采样
合成少量过采样数据
③ 用迁移学习对数据重新加权
TrAdaBoost算法
2.特征提取-特征学习
① 正则化网络
包括:深度自动解码器
深度卷积神经网络
② 用迁移学习进行特征自适应(FA)
包括:迁移成分分析(TCA)
联合分布适配(JDA)
深度神经网络
3.条件分类-分类器设计
① 用小而不均衡的数据设计分类器
包括:支持向量机(SVM)
代价敏感学习
② 用迁移学习设计分类器
基于参数的迁移