浅谈故障检测与分类

摘要

将故障检测与分类问题表述为基于神经网络的分类问题。然后,训练神经网络,进行故障检测,并考虑两个超参数(隐藏层层数和神经元数)的影响,研究了数据增强对神经网络性能的影响。利用神经网络进行数据扩充,解决了故障分类问题。

1.基于分类的人工神经网络

1.对于数据驱动的故障诊断方法来说,在将输入数据馈送到输入层之前需要对其进行归一化,一种可能的方法是特征缩放,以便所有值都在[0,1]范围内。
x′=x−min(x)max(x)−min(x){x}'=\frac{x-min(x)}{max(x)-min(x)}x=max(x)min(x)xmin(x)
2.在隐藏层中,输入数据中包含的信息通过非线性变换,依次转换为更高的表示形式。
h1=σ(W1x+b1)h_{1}=\sigma (W_{1}x+b_{1})h1=σ(W1x+b

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值