摘要
将故障检测与分类问题表述为基于神经网络的分类问题。然后,训练神经网络,进行故障检测,并考虑两个超参数(隐藏层层数和神经元数)的影响,研究了数据增强对神经网络性能的影响。利用神经网络进行数据扩充,解决了故障分类问题。
1.基于分类的人工神经网络
1.对于数据驱动的故障诊断方法来说,在将输入数据馈送到输入层之前需要对其进行归一化,一种可能的方法是特征缩放,以便所有值都在[0,1]范围内。
x′=x−min(x)max(x)−min(x){x}'=\frac{x-min(x)}{max(x)-min(x)}x′=max(x)−min(x)x−min(x)
2.在隐藏层中,输入数据中包含的信息通过非线性变换,依次转换为更高的表示形式。
h1=σ(W1x+b1)h_{1}=\sigma (W_{1}x+b_{1})h1=σ(W1x+b

最低0.47元/天 解锁文章
1947

被折叠的 条评论
为什么被折叠?



