SMZX十日游(第四阶段最短路径)最短路径学习笔记

创作背景

SMZX十日游倒数第二天,同时最短路径也是我的噩梦,所以……

目录

前置技能

什么是最短路径

最短路径求的是从某点到另一个点的最短距离(废话)

松弛操作

设当前得到的距离数组是d
对一条从u到v、权值为w的边进行
松弛即d[v]=min(d[v],d[u]+w);

Dijkstra(贪心算法)

简介

Dijkstra可以求从一个点(称为源S)出发,到各个点的最短距离
这种问题称之为单源最短路径问题
Dijkstra是一个贪心算法,只能处理边权非负的图

算法流程

  1. 首先S到S的距离d[S]=0
  2. 从未访问过的点中选取距离最短的点u,即d[u]最小
  3. 将u的所有出边松弛一遍,即把u能到的点的最短距离尝试更新一遍
  4. 此时S到u的最短距离已经求出,即d[u],继续重复前两步操作

模拟算法

  1. 选取点1
    在这里插入图片描述

  2. 第一遍松弛
    在这里插入图片描述

  3. 选取点2
    在这里插入图片描述

  4. 第二遍松弛
    在这里插入图片描述

  5. 选取点4并松弛
    在这里插入图片描述

  6. 选取点3并松弛
    在这里插入图片描述

  7. 完成! 在这里插入图片描述

Code

int dijkstra(int S)
{
	for (int i = 1; i <= n; i++)
		dis[i] = 1e9, vis[i] = false;
	dis[S] = 0;
	for (int i = 1; i < n; i++) {
		int u = -1;
		for (int j = 1; j <= n; j++) 
			if (!vis[j] && (u == -1 || dis[j] < dis[u]))
				u = j;
		vis[u] = true;
		for (int j = 0; j < e[u].size(); j++) {
			int v = e[u][j].to, w = e[u][j].dis;
			if (!vis[v] && dis[u] + w < dis[v])
				dis[v] = dis[u] + w;
		}
	}
}

优化思路

但是呢,这里时间复杂度太高,达到了O(n^2m)原因在于重复了多遍松弛操作,浪费时间,所以就需要用一样东西让它只做一遍后将结果存好,于是:
堆 / 线 段 树 / 优 先 队 列 优 化 ! ! 堆/线段树/优先队列优化!! /线/

Code

int dijkstra2(int S)
{
	for (int i = 1; i <= n; i++)
		dis[i] = 1e9, vis[i] = false;
	dis[S] = 0;
	priority_queue<PR, vector<PR>, greater<PR> > q;
	q.push(PR(dis[S], S));
	while (!q.empty()) {
		int u = q.top().second;
		q.pop();
		if (vis[u]) continue;
		vis[u] = true;
		for (int j = 0; j < e[u].size(); j++) {
			int v = e[u][j].to, w = e[u][j].dis;
			if (!vis[v] && dis[u] + w < dis[v]) {
				dis[v] = dis[u] + w;
				q.push(PR(dis[v], v));
			}
		}
	}
}

Bellman-Ford(暴力)

算法流程:

不断尝试松弛,直到不能松弛为止(这不就是枚举暴力吗)
可以证明,最多n-1次循环即可得到最短路径
若第n次循环还能进行松弛操作,说明有负环

模拟算法

额……这么暴力的算法,需要模拟吗?

Code

for (int i = 1; i <= n; i++)
		dis[i] = 1e9;
	dis[S] = 0;
	for (int i = 1; i < n; i++) {
		for (int u = 1; u <= n; u++)
			for (int j = 0; j < e[u].size(); j++)
				dis[e[u][j].to] = min(dis[e[u][j].to], dis[u] + e[u][j].dis);
	}

优化思路

这么暴力的算法,肯定慢啊,为什么?
假如d[u]在上一轮循环中没有更新
d[v] = min(d[v], d[u] + w)
d[v]不会被更新
因此从u出发的边没有必要进行松弛操作
怎么办?它的进阶版就出现了: S P F A SPFA SPFA
SPFA每次只把成功更新过的点放入队列,然后选择队头更新其它点。

Code

int SPFA(int S)
{
	for (int i = 1; i <= n; i++)
		dis[i] = 1e9, vis[i] = false;
	dis[S] = 0;
	queue<int> q;
	q.push(S);
	vis[S] = true;
	while (!q.empty()) {
		int u = q.front();
		q.pop();
		vis[u] = false;
		for (int j = 0; j < e[u].size(); j++) {
			int v = e[u][j].to, w = e[u][j].dis;
			if (dis[u] + w < dis[v]) {
				dis[v] = dis[u] + w;
				if (!vis[v]) {
					q.push(v);
					vis[v] = true;
				}
			}
		}
	}
}

Floyd(DP)

简介

这个算法能解决多源最短路径问题,即可以求任意两个点之间的最短距离
关键是这个算法非常好写
当然时间复杂度也比较高O(n^3)

算法流程

设f[i][j][k]为从i到j,路径只途经编号为1~k的结点的最短路径
转移f[i][j][k]=min(f[i][k][k-1]+f[k][j][k-1],f[i][j][k-1]
初始化f[i][j][0]为从i到j的边权,没有边就无穷大

Code

int floyd()
{
	for (int i = 1; i <= n; i++)
		for (int j = 1; j <= n; j++)
			f[i][j] = 0; // i~j的边权 
	for (int k = 1; k <= n; k++) // 最外层循环是k
		for (int i = 1; i <= n; i++)
			for (int j = 1; j <= n; j++)
				f[i][j] = min(f[i][j], f[i][k] + f[k][j]); 
}

The End

第 十 篇 博 客 纪 念 第十篇博客纪念
很快夏令营就结束了,所以……当然是准备收官之战啊

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值