初识机器学习(序):浅谈机器学习

一周前被老师拉去组建机器学习小组,当时的我还只是一个只会用java编写个五子棋AI或是做个简单的线程游戏的“机盲”。我甚至连Python都没有接触过,努力学习个几天终于勉强写了个Hello World。
花了整整两天时间才完成tensorflow的搭建。从一个完全的小白开始学习机器学习的相关知识,到目前勉勉强强能提交一次Kaggle上面的任务,过程倒是别有一番意趣。

啥是机器学习

回到正题,什么是机器学习?谈谈就目前为止我的理解。
法国思想家帕斯卡尔说,人是一颗会思考的芦苇。人之所以被我们称为万物的灵长,大部分原因就是人会思考。无论是上帝造人还是女娲造人,传说中他们都是按照自己创造的。在如今这个人人都可以是上帝的时代,人们当然希望让我们创造的机器也可以像人一样去思考。
在略微了解人类是如何思考的之后,聪明的程序员便开始想方设法用算法模拟人类思维。1950年,计算机先驱艾伦·麦席森·图灵在他的论文《计算机器与智能》中提出著名的“图灵测试”。假设我们有一台计算机,其运算速度非常快、记忆容量和逻辑单元的数目也超过了人脑,而且还为这台电脑编写了许多智能化的程序,并提供了合适种类的大量数据。之后我们将这台机器和一个人分别放置在两间互不联通的房间里,让二者与房间外的第三者进行交流,如果这个测试者无法分清哪边是人哪边是机器,那么便认定该机器具有同人相当的智能。

机器学习的分类

学习策略分类:
  1. 机械学习
    学习者无需进行任何逻辑的思考,只需要从周边环境获取信息来执行相应的指令。其学习的方法都是事先编好的,只要充分利用存储的知识和索引进行操作便可。之中比较出名的的例子如:塞缪尔的跳棋程序等。其实我在之前也有做五子棋的AI算法。(原来不知道,我居然也是早和机器学习有过一面之缘了)

  2. 示教学习
    这种学习方法和人类社会的学校教学方式相似,学习的任务就是建立一个系统,使它能接受教导和建议,并有效地存贮和应用学到的知识。我之前用Java写过一个手写识别的程序,通过不断的在界面上画数字,然后告诉它这是几,经过训练后它会保存下一系列数据,通过对比数据(也就是所谓的学习过知识了),找出相似度最高的那组识认为是这一类。(原来不止一面之缘呢)

  3. 演绎学习
    这个就有点东西了,它要求利用逻辑推导,从公式出发,逻辑推理得到结果。

  4. 类比学习
    大概意思是讲,找出两个不同领域知识的相似点,利用已知领域的知识类比推倒新领域的知识。(当年卢瑟福的原子结构模型就是类比太阳系推出来的,只不过他用的人脑罢了)

  5. 基于解释的学习
    大概就是老师讲解概念、例子,学生能理论推导,分析例子吧。

  6. 归纳学习
    这也是大多数学霸的学习方式了,从例子中自己总结归纳经验概念,再将其推广到更多方面。

学习形式分类:

这个分类才是在学习机器学习相关知识时用的最多的分类。

  1. 监督学习
    多数情况下,我们在建立某个模型之后,都会对模型进行一定的训练,也就是给定一大堆数据,并提供对应结果,让模型有一定的经验。这个过程就是监督过程,经过训练之后,模型知道了遇到什么情况该怎么做,于是便可以做出相应的预测。常用到的算法模型,如决策树、随机森林…什么的,以后应用中会遇见。

  2. 非监督学习
    非监督学习其实是一种归纳学习,建立中心,利用循环递减等方法减小误差来达到目的。

扬帆起航

厚着脸皮水了一篇博客,算是为机器学习的道路开个头QAQ
本人微信:hxq_1254971884 欢迎志同道合的小伙伴一起探讨

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值